

Connecting the IGM and Galaxies Close to Reionization

George Becker (UC Riverside)

UCB September 13, 2018

Connecting the IGM and Galaxies Close to Reionization

- 1. IGM Overview
- 2. Current Picture of Reionization
- 3. Large-scale fluctuations in the IGM neutral fraction at z < 6

The Intergalactic Medium

>90% of all baryons

10 Mpc

- Mildly non-linear regime
- Baryons reflect the physics of galaxy formation

Quasar Absorption Lines

Perturbations to the IGM 1: UV Background

Ionization rate

Ionizing emissivity

Perturbations to the IGM 2: Warm Dark Matter

30 comoving Mpc/h z=3

Newest constraint:

 $m_{\rm WDM} > 5.3 \text{ keV} (2\sigma)$

warm dark matter

Irsic+ 2017

Cosmic Reionization

1. When did it happen?

2. What sources are responsible (stars or AGN)?

Current best constraints...

Current best constraints...

- Lyα forest: Reionization essentially ended (by volume) by z~6 (e.g., Fan+2006, McGreer+2015)
- 2. CMB: $\tau_e = 0.054 \pm 0.007 (1\sigma)$ (Planck 2018)

Galaxy Lya Fraction

Decline in the fraction of galaxies with Ly α emission at z > 6 may indicate scattering by a significantly neutral IGM.

(Observations: e.g., Stark+2010; Pentericci+2011; Ono+2012; Treu+2013; Caruna+2014; Schenker+2014; Modeling: Bolton & Haehnelt 2013; Mesinger+2015, see also Dijkstra+2014)

Damping wings in z > 7 QSO spectra

Tend to favor significant neutral fractions at z > 7.

(Mortlock+2011, Bolton+2011, Bosman+2015, Grieg+2017, Davies+2018a,b)

Figures from Davies+2018b

Sources

AGN?

Star-forming galaxies?

AGN definitely emit ionizing photons, but are there enough at z > 6?

Plenty of star formation at z > 6, but do the ionizing photons escape?

(e.g., Madau & Haardt 2015)

Cosmic Reionization

What more can we learn from the post-reionization IGM?

The Lya forest at z < 6 is patchy... ...but there will be patchiness from density fluctuations alone.

What drives the large scatter in Ly α opacity z > 5?

It must be more than density fluctuations.

...and see Bosman+2018, Eilers+2018

Factor of >3 fluctuations in neutral fraction required.

62 QSOs at z > 5.7

Bosman+2018

Possible models...


```
f_{\rm H\,I} \propto n_{\rm H} \Gamma^{-1} T^{-0.7}
```

1. Fluctuating UV Background (Galaxies)

(Davies & Furlanetto 2016, D'Aloisio et al. 2018)

Dark troughs trace **low-density** regions with few ionizing sources and a short mean free path.

$f_{\rm H\,I} \propto n_{\rm H} \Gamma^{-1} T^{-0.7}$

2. Fluctuating UV Background (QSOs)

(Chardin et al. 2015, 2017)

Dark troughs trace **any** regions far from ionizing sources.

 $f_{\rm H\,I} \propto n_{\rm H} \Gamma^{-1} T^{-0.7}$

3. Fluctuating IGM Temperature

(D'Aloisio et al. 2016a)

Dark troughs trace **high-density** regions, where reionization ended early and the gas has had time to cool.

All three models can be tuned to match the opacity distribution.

GB+2018

The Test: Use galaxies to trace the density field.

Figures: Davies+2017

Davies, GB & Furlanetto 2017

Narrow-band search for Lyα emitters in the field around J0148+0600 (giant Lyα trough).

Subaru Hyper-Suprime Cam data acquired August 2017.

Deep (m_{NB} = 26): High number density of sources to probe density.

Large Field (90'): Self-consistently compare region around QSO line of sight to the surrounding field.

LAEs around giant Lya trough

GB+2018

LAEs around giant Lya trough

Surface density of LAEs

GB+2018

- At first glance, results support fluctuations in a UVB dominated by galaxies.
- Model details may be important.
- Could galaxy Lyα emission be suppressed along the trough?

Could there be neutral gas?

Summary

- Multiple lines of evidence now point to a relatively late hydrogen reionization, but the timing and sources remain uncertain.
- The z < 6 IGM places strong boundary conditions on reionization.
- Multiple models attempt to explain the large-scale fluctuations in IGM Lyα opacity at z~6.
- Deficit of LAEs around a deep Lya trough supports large-scale fluctuations in the ionizing UV background. Ultimately a way to identify reionization sources.
- UVB fluctuations left over from recent reionization?
- Other models possible? Reionization not complete at z=5.7?