



#### Outline

- New results from Planck Problem solved?
- The ionizing photon budget over 2 < z < 6</li>
- Have we detected reionization at z~6? z~7?

#### Reionization



- What are the first stars like?
- When do the first galaxies form?
- What are the properties of the earliest galaxies, and how do they evolve?
- How and when do the first supermassive black holes form?
- How does non-linear structure evolve in the IGM?
- How do galaxies and the IGM interact?

#### Boundary condition: Lya Forest

IGM Lya opacity:

 $au_{
m Lylpha} \sim 10^5 f_{
m H\,I}$ 

Transmission at z~6 means reionization *largely* complete within 1 Gyr (but see later in the talk).



#### Planck 2015

Electron optical depth:  $au_{
m e} \propto N_{
m e}$ 

earlier reionization  $\rightarrow$  higher  $\tau_{\rm e}$ 





$$\tau_{\rm e} = 0.17 \pm 0.06$$

$$z_{\rm reion} = 17 \pm 5$$

required "non-standard" star-formation history

WMAP9

$$\tau_{\rm e} = 0.089 \pm 0.014$$

$$z_{\rm reion} = 10.6 \pm 1.1$$

still uncomfortably high

Planck 2015

$$\tau_{\rm e} = 0.066 \pm 0.016$$

$$z_{\text{reion}} = 8.8^{+1.7}_{-1.4}$$

better dust maps + constraints from CMB lensing

#### A consensus model?

#### Robertson+2015



Lower  $\tau_e$  from Planck reconciles reionization with high-z star formation rate. Right?





#### Consistency?

#### Robertson+2015



To complete reionization, need ~3 ionizing photons/atom.

#### Ionizing emissivity:



Model assumes  $f_{\rm esc}=0.2$  , fixed  $\xi_{\rm ion}$ 





# Ionizing Emissivity



#### The Intergalactic Medium



- Main reservoir of matter in the universe (>90% baryons)
- Low density  $0.1 \lesssim \rho/\bar{\rho} \lesssim 10$
- After reionization: warm, photo-ionized

$$T \sim 10^4 \text{ K}$$
$$f_{\text{H I}} \sim 10^{-5}$$

#### The Intergalactic Medium



### Lya Forest



# Lya Forest



 $\lambda$  (nm)

#### Counting photons



### IGM Lya Opacity

#### The Continuum Problem



#### Solution: Don't fit continua

Use composites.



Becker+ 2013

Use flux ratios to get F(z)/F(z=2)

### Lya Opacity



Becker+ 2013

- 1. Reduced errors
- 2. Extends to z=5
- 3. No bump at z=3

### IGM Temperatures



# Ionizing Emissivity



#### **Emissivity Results**

Modest emissivity at z~3

Madau &

Dickinson (2014)

Redshift

-2.4

Rising as SFR density decreases?



- Lower temperatures
- Radiative transfer
- Shorter mean free path

Becker & Bolton (2013)



#### But a problem at z~6...

 $\dot{N}_{
m ion} \propto \Gamma/\lambda_{
m mfp}$ 







#### But a problem at z~6...

 $\dot{N}_{
m ion} \propto \Gamma/\lambda_{
m mfp}$ 



Does the emissivity have to rise at z > 6?

#### Scatter in Lya opacity





Fan et al (2006)

Get large scatter in Ly $\alpha$  opacity from the density field <u>alone</u>.

HAVE WE DETECTED PATCHY REIONIZATION IN QUASAR SPECTRA?

ADAM LIDZ, S. PENG OH, AND STEVEN R. FURLANETTO Received 2005 December 15; accepted 2006 January 26; published 2006 February 14

#### ULAS J0148+0600

 $z_{em} = 5.98$ 



10 hr VLT/X-Shooter Spectrum

# Compared to other Lya troughs...



ULAS J0148 trough is longer and at substantially lower redshifts.



Becker+2015

#### How can these live in the same universe?



#### The problem: Assumption of a uniform UVB



#### Lya forest opacities



Uniform UVB does not reproduce observed IGM Ly $\alpha$  opacities at z > 5

### "Post-Overlap" phase of Reionization



#### "Post-Overlap" phase of Reionization



### "Post-Overlap" phase of Reionization







 $\overline{ au_{
m eff}} = -\ln{\langle F 
angle}$  50 Mpc/h regions





 $au_{
m eff} = -\ln \langle F 
angle$  50 Mpc/h regions





 $au_{
m eff} = -\ln \langle F 
angle$  50 Mpc/h regions





 $\overline{ au_{
m eff}} = -\ln{\langle F 
angle}$  50 Mpc/h regions

#### Ionizing Emissivity

Flat or rising over 3 < z < 6



- 1. Abundant photons for reionization.
- 2. Galaxy ionizing efficiency ( $f_{\rm esc}^* \xi_{\rm ion}$ ) must increase with redshift

#### Constraints from z~7 quasar?



Proximity zone suggests >10% neutral IGM (Mortlock+2011, Bolton+2011)

#### Constraints from z~7 quasar?



Proximity zone suggests >10% neutral IGM (Mortlock+2011, Bolton+2011)

Reasons to be skeptical...



#### z~7 Damping Wing?

- Among objects that match in C IV, ULAS J1120 is not a strong outlier
- Easy to find similar lower-redshift objects without damping wings
- No need for neutral IGM



Bosman & Becker, submitted

### New z > 6.5 quasars!

#### Pan-STARRS



#### DES+VISTA



Venemans+2015

#### The latest DES quasar



More extended proximity zone than J1120, consistent with an ionized IGM near z~7.

#### Summary



- Planck data suggest a somewhat later reionization than WMAP, but a consensus model remains elusive
- Ionizing emissivity remains flat or increases with redshift over 2 < z < 6, even as global star formation rate declines — escape fractions, IMF may evolve
- Lya forest shows evidence of large-scale UVB fluctuations near z~6, consistent with patchy reionization
- Neutral fraction at z~7 still unclear, but larger z > 6.5 quasar samples becoming available

#### Collaborators —

Jamie Bolton (Nottingham), Martin Haehnelt (Cambridge), \*Sarah Boseman (Cambridge), Matteo Viel (Trieste), \*Alex Calverley (Cambridge), Paul Hewett (Cambridge), Gabor Worseck (Heidelberg), Xavier Prochaska (UCSC), Michael Rauch (Carnegie Observatories), Max Pettini (Cambridge), Piero Madau (UCSC), Emma Ryan-Weber (Swinburne), Bram Venemans (MPIA) \*students