

New Insights into Hydrogen & Helium Reionization from the Thermal History of the IGM

George Becker
Cambridge IoA & KICC
3.8.2010

Overview

- Review of reionization probes
- IGM temperatures probing He II reionization
 - Curvature of the Lyα forest
- IGM temperatures probing H I reionization
 - QSO near zones

Jamie Bolton (Melbourne) Martin Haehnelt (IoA)

Reionization -- Quick facts

	Hydrogen	Helium
Species	H I and He I	He II
ΔΕ	13.6 eV (24.6 eV for He I)	54.4 eV
Source	Galaxies?	QSOs?
Z _{reion}	z > 6	z > 3

Hydrogen reionization: galaxies

Bunker et al. (2009)

McLure+ 09 Ouchi+09
Oesch+ 09 Labbe+ 09
Bouwens+ 09,10 Yan+ 09
Bunker+ 09 etc.

Helium reionization: QSOs

He II, $\Delta E = 4$ Ryd

2dF: Croom et al. (2004)

see also Jiang et al. (2008, 2009), Willott et al. (2009)

Hydrogen Reionization - Two limits

Early CMB

Te to Thomson scattering

WMAP7:
$$z_{\rm reion} = 10.4 \pm 1.2$$
 ("instant")

but consitent with a range of reionization histories

Dunkley et al. (2008), Jarosik et al. (2010)

$\frac{Late}{Transmission in the Ly} \alpha forest$

IGM must be highly ionized at z < 6

Currently $\geq 47 \text{ z} > 5.7 \text{ QSOs known (many faint)}$

Mean transmitted flux

 $au_{\mathrm{Ly}\alpha} \sim 10^5 f_{\mathrm{H\,I}}$

Possible downturn in UV background at z > 6, but not a clear signature of the end of H reionization

Lyα Emitters

Decreasing apparent LAE number density suggests an increasing neutral fraction?

*** Interpretation of Lyα LFs is debated (e.g., Dijkstra+ 2007) ***

Metal Lines as IGM Probes

Metal lines at z > 5

2-part survey

CIV

Typical tracer of IGM metals over z~2-5

declines rapidly at z > 5

O I

More rare - traces galaxy ISM over z~2-5 (DLAs)

much more numerous at z ~6 (?)

Seeing end of hydrogen reionization?

He II opacity evolution

He II opacity evolution

- High opacity in He II Lyα is a stronger indication of large He II fraction than high opacity in H I Lyα is of a large H I fraction
 - x14 lower abundance
 - x4 lower optical depth for a given column density
 - Voids are emptier at z~3 than at z~6
 - Can use H I Lyα to identify voids
- $x_{He | II,V} > 0.03$ in 10 Mpc patches at $z\sim3$
 - 100x stronger constraint than on H I at z~6

McQuinn (2009)

Summary of Reionization Probes

Hydrogen

- H I Lyα forest -- mean opacity
 - Saturates for tiny neutral fractions (see end of reionization only?)
- Lyα emitters
 - Transmission of Ly photons depends on both local factors and IGM
 - DM halos, galaxies evolve
- Metals
 - Sensitive to large neutral fractions
 - Only probe enriched regions
- 21 cm -- potentially powerful (future)
- Others -- Gap statistics, QSO near zone sizes

Helium

- He II Lyα forest -- mean opacity
 - Saturates for small neutral fractions (see end of reionization only)
- Metals
 - C IV / Si IV may trace hardening UVBG, but observations unclear
 - Lack of C IV at z > 5.2 due to He II?
 - Only probe enriched regions
- ³He+ 8.7 GHz ? (Mcquinn 2009)

Need a probe that will allow us to study reionization as it is happening...

The Thermal Signature of Reionization

- Reionization photo-heats the gas
- Expect boosts in temperature from both H I and He II reionization, followed by rapid cool-downs due to adiabatic expansion
- T(z) sensitive to:
 - patchiness of reionization
 - spectrum of ionizing sources
 - radiative transfer effects
- One of the only ways to observing reionization in progress

Temperature Evolution: He II reionization

Photoionization heating ⇒ Temperature increase during He II reionization

 $\Delta T \approx 5000 - 30000 \text{ K}$

Temperatures from the Lyα forest

- Small-scale structure
 - Thermal Broadening
 - Jeans Smoothing

- "Classic" Analysis Methods
 - Power spectrum / Wavelets
 - Line widths

Existing Measurements

Temperatures by eye

Curvature

Curvature =
$$\frac{F''}{[1 + (F')^2]^{3/2}}$$

Higher curvature = Colder

Measuring Curvature in the data

b-spline fits

- 64 high-resolution (R=22000-40000) QSO spectra
 - Keck/HIRES & Magellan/MIKE
 - $\bullet \quad 2 < z_{QSO} < 6.4$

The simulations

- Large grid of thermal histories
- Grid in T_0 and γ
 - $\bullet \quad T(\Delta) = T_0 \, \Delta^{\gamma 1}$
- Very high resolution
 - 10 Mpc box, $m_{gas} = 10^5 M_{sol}$
 - Needed for z > 4 Lyα forest

Curvature depends on T_0 and γ

Temperature-density relation

Adiabatic heating/cooling creates a powerlaw $T-\Delta$ relation in the IGM:

$$T(\Delta) = T_0 \, \Delta^{\gamma - 1}$$

Overdensity:

$$\Delta \equiv rac{
ho}{\langle
ho
angle}$$

Temperature at the mean density:

$$T_0 \equiv T(\Delta = 1)$$

(Hui & Gnedin 1997)

best to normalize $T(\Delta)$ near the Δ that dominates your signal

Lyα forest "sees" a limited density range

$$T(\Delta) = T_0 \, \Delta^{\gamma - 1}$$

Densities probed by the Lya forest

- Forest is most sensitive to overdensities (Δ) that produce $au\sim 1$
- Strong redshift evolution

$$au_{\rm Ly\alpha}(\Delta) \propto H^{-1}(z) n_{\rm H\,I}$$

$$\propto (1+z)^{4.5} \Gamma^{-1} T_0^{0.7} \Delta^{2-0.7(\gamma-1)}$$

$$\Delta \propto (1+z)^{-2.8} \Gamma^{0.6} T_0^{0.4}$$

• Probe higher Δ at lower redshift

Temperature results - $T(\Delta)$

Temperature results - T₀

 $\gamma \sim 1.5$ $\,$ Maximum in photoionization equilibrium

 $\gamma=1.3$ Minimum suggested by simulations of He II reionization (McQuinn et al. 09)

He II reionization required

Post-reionization:T0 will depend on the spectral shape of the ionizing background, $J_{
u} \propto
u^{-lpha}$

Putting together T_{eff} and T_0

T₀ increases during reionization

Following reionization, the He II Ly α forest becomes transparent

Curvature vs. Other Methods

vs. wavelets

vs. line widths

Temperature constraints on Hydrogen reionization

- Ly α forest is opaque at z > 6
- Still get temperature information from QSO near zones
 - Line width distribution
- Cautions:
 - Biased regions
 - QSO will also ionize He II

Bolton, GB+ 2010

Near zone line widths

Hotter IGM produces wider absorption lines

T₀ constraints

Set limits on the *local* redshift of H I reionization

Bolton, GB+ 2010

Conclusions

- The thermal history of the IGM can be used to trace both hydrogen and helium reionization.
- Improved measurements of the IGM temperature over 1.8 < z
 5.4 by using the curvature, and by measuring the temperature at the density actually probed by the Lyα forest
 - T₀ increase from z > 4 to z~3 is a clear signature of an extended He II reionization. May also be seeing the subsequent "cool down" from z~3 to 2
- At z > 6, temperatures can still be measured in the near zones of QSOs
 - For the first case measured, z_{H reion} < 11 locally
- Future:
 - Fit the entire temperature-density relation
 - Separate Jeans smoothing from temperature changes using QSO pairs
 - Look for temperature fluctuations indicative of patchy reionization
 - Thermal proximity effect

