Dark Matter Annihilation and Non-Gaussianity: Signals of New Physics Hidden by Messy Astrophysics

Eric Baxter The University of Chicago

with Scott Dodelson, Peter Adshead, Adam Lidz, Brian Fields, Nachiketa Chakraborty

Astrophysical Probes of Physics Beyond the Standard Model

- Why are dark matter and non-Gaussianity attractive targets?
 - Dark Matter
 - Likely a new particle
 - We know it's there, and where to look for it
 - Hard to detect DM in lab
 - Non-Gaussianity
 - Can tell us about inflation
 - Inflation occurs at energy scale far beyond reach of colliders
 - Can constrain NG in interesting regimes with current/future observations

Messy Astrophysics

- Astrophysical backgrounds interfere with our ability to measure signals of new physics
 - Dark Matter
 - Idea: measure gamma-rays produced by dark matter annihilations
 - Challenges:
 - Many astrophysical sources also produce gamma-rays
 - Modeling these astrophysical sources is difficult
 - Non-Gaussianity
 - Idea: measure NG with a redshifted 21 cm experiment
 - Challenges:
 - Many large astrophysical foregrounds
 - Uncertainties in physics of reionization

Constraining Dark Matter Annihilation in Galactic Subhalos with Gamma-Ray Data

Baxter, Dodelson, Koushiappas, Strigari, 2010 (Phys. Rev. D, 82, arXiv: 1106.2399)Baxter, Chakraborty, Dodelson, Fields, in prep.

Probing Dark Matter with Gamma-Rays

- Self annihilation of dark matter particles can produce standard model particles, including gamma-rays
 - Possible in many popular dark matter models
- Might be possible to 'indirectly detect' dark matter by observing these gamma-rays
 - Fermi telescope has been in orbit for ~5 years
- Can hope to learn a lot about dark matter
 - Particle physics properties (e.g. mass, annihilation cross section, interactions, etc.)
 - Distribution in space

Where should we look?

- Some possible targets:
 - Galaxy clusters (lots of dark matter, but distant)
 - Galactic center (lots of dark matter, close by, but astrophysics messy)
 - Individual dwarf galaxies (close by, lots of dark matter)

• Diffuse Signal from Galactic Dark Matter Subhalos

- Will contribute to diffuse (no point sources detected) background
 - Might not be able to detect individual subhalo, but hope is to constrain *total* subhalo contribution
- − Clumpiness → annihilation signal enhanced
- Expected to dominate galactic annihilation signal beyond about 30 degrees from galactic center

Galactic Dark Matter subhalos

- N-body simulations make predictions for subhalo properties
 - Smooth and subhalo components
 - $\frac{dN}{dM}$ ~ $M^{-1.9}$ → lots of small subhalos -
 - Minimum subhalo mass depends on particle physics, but generally very small (10⁻⁷ M_{sun} not unreasonable)
 - Distribution of subhalos (very) roughly follows smooth dark matter
 - Internal density of subhalo (and thus annihilation luminosity) depends on properties of host halo, orbit of subhalo, and other factors
- We use results from Koushiappas et al. 2010
 - They use semi-analytic model (Zentner et al. 2007) to generate distributions of subhalo luminosities

- Mass function
- Mass-luminosity relation

Astrophysical Backgrounds

- There are several sources of diffuse (no point sources detected) gamma-rays
 - Galactic diffuse emission
 - Point sources below detection threshold
- Galactic diffuse emission
 - Cosmic rays interacting with galactic matter/photons
 - Modeling this background
 - Need to know gas + photon distribution + cosmic ray propagation
 - Models are good, but not perfect
 - It would be great if there were a way to separate diffuse galactic backgrounds from diffuse light produced by dark matter annihilation in subhalos...

The Photon Counts Probability Distribution Function, P(C)

- Toy example:
 - Source type 1 (rare and bright):
 - Assume there are either 0 or 1 sources in a pixel
 - Probability for single source to produce C photons is proportional to luminosity function (with some spatial integral)
 - → P(C) follows luminosity function at high C
 - Source type 2 (common and dim):
 - Assume there are N >> 1 sources per pixel (on average)
 - Source can emit 1 photon with probability ϵ << 1, or 0 photons with probability (1- ϵ)
 - Probability for N sources to produce C photons is $B(N,\,\epsilon\,)$
 - In limit that N is very large and ϵ very small, binomial approaches Poisson
 - → P(C) follows Poisson distribution
- Galactic diffuse emission
 - Photons effectively produced by many sources along line of sight
 - Like source type 2
- Dark matter subhalos
 - Few subhalos along the line of sight will produce most photons in pixel
 - Like source type 1
- Idea of using P(C) to discriminate between subhalo annihilation signal and backgrounds proposed by Lee et al. 2009

P(C) = probability to observe C photons in a single pixel

Calculating the PDF for Dark Matter Subhalos

- Want to convert mass function and mass luminosity relation → prediction for P(C)
 - Use approach based on P(D) formalism (Scheuer 1957)
 - Basic problem:
 - Probability for one source to produce flux F = P₁(F)
 - Convolve this PDF with itself N times to get total P(F)
 N is itself a Poisson random variable
 - Discretize P(F) to get P(C) assuming exposure E
- Allow P(C) to vary on the sky
 - Can account for non-isotropic subhalo emission
 - Non-uniform exposure of telescope

- One model parameter:
$$f_{\rm WIMP} = {N_\gamma \left< \sigma v \right> \over M_\chi^2}$$

Mass function

Mass-luminosity relation

$$P(F) = \mathcal{F}^{-1}\left[e^{\mu(\mathcal{F}[P_1(F)]-1)}\right]$$

$$P(C) = \int dF \frac{\exp\left(-EF\right)(EF)^{C}}{C!} P(F)$$

P(C) for Dark Matter Subhalos

٠

٠

Other Astrophysical Backgrounds

- Undetected point sources also contribute to diffuse gamma ray background
 - A point source population that is rare/bright may produce similar P(C) to dark matter
- Blazars
 - Galaxies that host active galactic nuclei
 - Possible large contribution to gamma-ray sky below point source detection threshold
- We model the Blazar P(C) using the same P(D) techniques
 - Fit for parameters of both Blazars and dark matter simultaneously
 - Turns out there isn't a lot of degeneracy

No association	Possible association with SNR or PWN	
× AGN	☆ Pulsar	△ Globular cluster
* Starburst Gal	PWN	⊠ HMB
+ Galaxy	○ SNR	* Nova

INPA Journal Club Seminar

A Maximum Likelihood Approach

- Total model P(C) for a pixel is convolution of dark matter + blazar + poisson
- Likelihood of observing the data given our model P(C) is

$$\mathcal{L} = \prod_{i=1}^{N_{pix}} P_i(C_i)$$

- Consider 5 different parameters
 - Dark matter: f_{WIMP}
 - Blazars: three parameters controlling behavior of luminosity function
 - Amplitude of Poisson component

Data from Fermi

- The Large Area Telescope (LAT)
 - Gamma-rays can't be reflected or refracted → measure e+/e- upon pair conversion
 - Large field of view, broad energy range, good angular resolution, large collecting area and high quality event discrimination
 - \rightarrow great for indirect detection
 - Detects gamma-rays with approximately 20 MeV < E < 300 GeV
 - Has collected several years of data
 - Data are public!

-2.6 Log (cm⁻²s⁻¹sr⁻¹)

Dark Matter Constraints

INPA Journal Club Seminar

Summary: Dark Matter Annihilation in Galactic Subhalos

1. Dark matter subhalos are promising targets for indirect detection

- 2. Photon counts PDF is a powerful tool
 - Performs background discrimination automatically
- 3. Early results are promising

Constraining Inflation by Measuring the Impact of Primordial Non-Gaussianity on the Ionization Field During Reionization

Adshead, **Baxter**, Dodelson, Lidz, 2012 (Phys. Rev. D 86, 063526, arXiv: 1206.3306) Lidz, **Baxter**, Dodelson, Adshead, in prep.

Inflation and Primordial Non-Gaussianity

- Non-Gaussianity as probe of inflation
 - Simplest inflationary model predicts initial fluctuations are drawn from Gaussian distribution
 - Detection of primordial non-Gaussianity
 - Multiple fields?
 - Derivative interactions?
 - Features in inflaton potential?
 - Many ways to constrain non-Gaussianity

Scale Dependent Bias

- Dalal et al. 2008 showed that primordial non-Gaussianity leads to scale dependence of the halo bias
 - Bias model:

 $\delta_{halo}(\vec{k}) = b(M)\delta_{matter}(\vec{k})$

– f_{NL} type non-Gaussianity → scale dependence of bias:

$$\Delta b_{NG}(M,k) \propto \frac{f_{NL}}{k^2}$$

- Constraints from large scale structure potentially more powerful than constraints from CMB
 - Measure bias, fit for f_{NL}

Scale-Dependent Bias with Excursion Sets

- Can derive scale dependent bias using excursion set formalism (Adshead, Baxter, Dodelson, Lidz, 20120)
 - Standard approach doesn't work because of coupling between different scale modes → used the Maggiore and Riotto (2010)
 - Showed that the k⁻² dependence is very general
 - Showed how different collapse models and different forms of NG → different coefficient of scale-dependent bias
- Understanding variations in predictions for scale-dependent bias important
 - To place robust constraints on NG we need to understand how predictions change with different collapse models (i.e. messy astrophysics)
 - Important for large scale structure surveys like BOSS
- Will allow us to understand effects of NG on reionization

Non-Gaussianity and Reionization

- Universe experiences phase transition at z≈6-15
 - Goes from being neutral \rightarrow ionized
 - Expect ionizing sources to form in regions of high density
 - Ionization field should roughly trace matter overdensities
 - → Maybe non-Gaussianity has some effect on ionization field

Effects of NG on Reionization

- Can model reionization using excursion sets (Furlanetto et al. 2004)
- Can solve excursion set problem in different ways:
 - Analytically using machinery of Maggiore and Riotto
 - Semi-analytically with Monte Carlo realizations of ionization field
- Results:
 - Positive f_{NL} speeds reionization
 - Changes bubble size distribution
 - Scale-dependent bias
 - NG → scale dependent bias of ionization field with same 1/k² dependence

Redshifted 21 cm Observations

- Redshifted 21 cm line can be used to measure ionization field during reionization
 - Spin-flip line of neutral hydrogen
 - Redshifted to roughly 100-250 Mhz

- Large astrophysical foregrounds
 - Extragalactic point sources, galactic synchrotron, galactic free-free
 - Expected to be roughly 4 orders of magnitude larger than cosmological signal

Constraining non-Gaussianity with Redshifted 21 cm Measurements

- How well can we constrain non-Gaussianity with a redshifted 21 cm experiment?
- Foreground removal
 - Possible to remove them as they are smooth in frequency space (along line of sight)
 - However, foreground subtraction → loss of large scale modes
 - Large scale modes contain most info about NG

21 cm Non-Gaussianity Fisher Projections

- Generate projections for constraint on f_{NL} using Fisher matrix
- Survey assumptions
 - 10 degrees x 10 degrees
 - 100-200 Mhz (z ≈ 6-13)
 - Divided into 13x13x13 pixels
- Calculate pixel-pixel covariance matrix
 - → Calculate Fisher matrix
 - → Invert to get parameter covariance matrix
- Foreground subtraction
 - Assume foregrounds captured by cubic polynomial with free coefficients

$$b_{\text{total}}(k) = b_G + \frac{Af_{\text{NL}}}{k^2}$$

Summary: NG + Reionization

- Scale-dependent bias is a powerful probe of non-Gaussianity
 - Galaxy surveys
 - 21 cm experiments
- Important to understand dependence of scale-dependent bias on details of structure formation (both halos and bubbles)
 - Necessary for placing robust constraints on NG
 - This understanding can be obtained with excursion set formalism
- 21 cm experiments can place interesting constraints on non-Gaussianity in spite of foregrounds

Summary

- Two exciting places to look for signals of physics beyond the standard model:
 - Gamma-rays from dark matter annihilation in galactic subhalos
 - Effects of non-Gaussianity on ionization field during reionization
- Astrophysical foregrounds/backgrounds are large, but manageable