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Road map of my talk

@ Alternatives to inflation: what sources

primordial perturbations?

G.Geshnizjani, W.Kinney, A.M, Phys.Rev. D82 (2010) 083506
G.Geshnizjani, W.Kinney, A.M, JCAP 1202 (2012) 015
G.Geshnizjani, W.Kinney, A.M, JCAP 1111 (2011) 049

@ Constraining cosmology from CMB

@ Constraints on mixed inflaton/curvaton perturbations
W. Kinney, A.M., B. Powell, A. Riotto, Phys.Rev. D86 (2012) 023527

@ Impact of reionization history on CMB

parameter estimation
with Nick Gnedin & William Kinney, arXive: 1210.?

@ Probing primordial NG with DM halo profile

with Scott Dodelson & Antonio Riotto, arXive: 1210.?
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Timeline of the universe
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PRESENT
13.7 Billion Years

after the Big Bang

@ Inflation

@ Matter-radiation equality: DM
inhomogenities start to collapse

@ Recombination (z >~ 1100):
pt+e — H
Universe becomes transparent to
CMB photons (free streaming)

@ Reionization (z ~ 10) :

radiation from the first stars and
quasars reionize the universe and
of the photons re-scatter ~ 107%

@ Structure continues to grow
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Scale-invariant perturbations:
Is inflation the only way?



What do we observe in CMB

Scale-invariant perturbations Super-Hubble correlated
n, = 0.963 + 0.014 fluctuations at recombination
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What general conclusions can be made
about the physics of early universe?



Result in short

@ In an expanding universe, to obtain perturbations
consistent with observation at least one of these
three conditions must be satisfied:

o
@ Super-luminal speed of sound 2|
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Canonical Case:

@ In terms of Mukhanov-Sasaki variables:
v = z(, z = av 2e

The mode equation in

Fourier space given by:

Z//

vy + (k* Z)vk:()

@ Scale-Invariance:

Z// 2 g g
M e — RC
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Generation of perturbations

Comoving Scales
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Horizon Crossing and scales

@ Assume decelerated expansion:

€>1%RH>O

@ Horizon crossing :
AilTs) = Re(7i) = |73
Ar = Rclwy) = |T71 > Bpley)

®CMB + LSS: )\, > 1000,

Tf_Tfi

Ry (7y)
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~ Energy Density

@ Conftinuity equation: p — e el

0
P ‘s i 1
ln—:2/ eHdt:2/ eRy dr
Pf s T
% T# A
> (Tf)/ edTr  (Ry > 0)

SRS Ty (e > 1)
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Super-Planckian energy density

@ CMB + LSS

@ Continuity: ln& i )
ps  Rulry)

Pi = 10868pf!

pr > (100 Mev)* = p; > M;l
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Non-Canonical Case

Quadratic action for curvature perturbations:

2 : :
S = @ dz°drz* (%) — e, (1) (V()*

Through a time transformation: dy = csdT

) 3
St 2 dx dyq (dy) (VC) _
where

s ay\/ 2e 8 av/ 2e




Non-Canonical Case, contd.

® In terms of Mukhanov-Sasaki variables:

av/2¢
/s

@ The mode equation in Fourier space is given by:
4
el s W
q

Vg gl q =

q// 2
® Scale-invariance condition: — x >
q Y
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Horizon Crossing and scales

® Assume decelerated expansion: ¢ > | — Ry >0
@ Horizon crossing :  \;(7;) = R¢ (1) = |74]

Ap =d0tar) = l7el > Ru(7y)

Ty
Yr — U = / E R e )

()

@CMB + LSS: A; > 1000A;

Cs Ty —45y)

Ry (7y)
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Super-luminal speed of sound

® CMB + LSS Cs (T4 — Ti) ~ 1000
Rp ()

@ Continuity: ;70 2( i 7i) 2000
Pf Ry (7¢) Cs




Result in short

@ In an expanding universe, to obtain perturbations
consistent with observation at least one of these
three conditions must be satisfied:

@
® Super-luminal speed of sound

D
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Impact of primordial non-
Gaussianity on Dark Matter
halo profile



Outline II:

@ Motivation
@ Semi-analytical model
@ Excursion set approach
@ Excursion set theory
® Path-integral formulation

@ Results
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Moftivation:

@ CMB: perturbations small and still
unprocessed

@ LSS: highly evolved perturbations, Fourier
modes are coupled and inferact

@ Successful use of LSS for probing primordial
NG: identify a feature that can be caused by
primordial NG and not standard gravitational
instability,
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Ingredients:

@ Semi-analytical model for halo profile

® NG correction to linear density field: path-
integral formulation of excursion set theory
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http://arxiv.org/abs/1010.2539
http://arxiv.org/abs/1010.2539

Formation of DM halos

@ Initial conditions are laid down by inflation
@ Growth of perturbations under gravitational-instability
@ Linear growth: modes evolve independently
cosmology dependent
@ Non-linear growth: modes couple
@ Turn around
@ DM = collisionless —3» Shell crossing

@ Merger and accretion events
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@ Structure formation is a process

@ N-body simulations show in
properties of halos:

@ density profile, abundance, clustering
@ Can we explain this universality ?

@ Dalal et al. : crude semi-analytical model to
explain the main physical effects in
formation of halos
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PNG and DM halo profile ?!

Halos form from the peaks of smoothed initial
(Gaussian random) density field

=3 properties of halos

properties of initial density peaks ==

@ Dalal et al. :
@ Properties of initial peaks

@ mapping from peaks to halos (collapse
model)
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Origin of NFW halo profile

o
adiabatic invariant: J,. = ;[vrdr x [r x M(r)]}/?

Given its value before the collapse (turn around),
predict its value at later fimes

@ turn around: M; X rs, o Mé/g/&in

we can predict the halo profile given the
initial peak profile
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@ Naive Gaussian statistics of the peaks
(BBKS):

@ The naive calculation ignores the
hierarchy of peaks within peaks for CDM

@ During the collapse, processes such as
dynamical friction drag off-center sub-
peaks to the center

@ Simple model: densest material comes
from the highest sub-peaks that collapse
first —» statistics of highest sub-peaks

25



Linear Density Field

initial peak profile
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http://arxiv.org/abs/1010.2539
http://arxiv.org/abs/1010.2539

Mass Profile
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http://arxiv.org/abs/1010.2539
http://arxiv.org/abs/1010.2539

Origin of NFW halo profile

o
adiabatic invariant: J,. = ;[vrdr x [r x M(r)]}/?

Given its value before the collapse (turn around),
predict its value at later fimes

@ turn around: M; X rs, o Mé/g/&in

we can predict the halo profile given the
initial peak profile
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Excursion set theory

@ Study the evolution of
6(R) as a function of R

At R=00,0(R) =0
Lowering R, /(R) evolves
stochastically

@ Time: S = 0*(R)
At R ="oc S —il
R decreases, S increases

@ Probability of forming a
halo mapped to first
passage time problem
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@ Evolution of §(S) is a stochastic process.

@ For Gaussian density field smoothed with sharp
k-space filter, §(S)obeys Langevin equation with
Dirac delta noise

@ The corresponding distribution function, 7(0,5)
IS a solution to Folker-Planck equation:

@ Probability of first crossing:
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Path-integral formulation

@ Compute the probability distribution of 0(5) In

terms of its correlators
< 0(51) 0(52) >, < 0(51) 0(S2) 0(S3) >, -

@ Not solve PDE for «(4, S)

@ Constructs it by summing over all trajectories
that never exceeded the threshold, i.e path
integral.
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@ Consider ensemble of trajectories all starting
from 0 and follow them for time S

@ Discretize time interval |0, S] into steps, AS = ¢

@ A discretized trajectory is a set of values
11,92, -+, 0n} where 0(5:) =9

@ Find the probability of arriving at point §,, at
time S, through trajectories that have never
exceeded some threshold,
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2;5(S;)
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@ The expectation value
can be written as:

connected p-point function

@ For Gaussian case only < §(S;)d(S,;) >

@ For NG case higher order correlators should
be included
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Conditional probability:  P(§, (6y, ;)

P(5n|50751) e HNG(50°51) Jd

=.-

IInG(00;01;0n) =HG(005071; 0, ) + Allna(d;01; 0, )

A :
AHN(;(5Q;51;5¢L) — ( 6) Z ks 52535k > Gi(?jakWG(éo;(Sl; 57@)

2,J,k=0
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Rionization history and
CMB parameter estimation



Outline III:

@ Motivation: CMB and Reionization

@ Basics of Reionization

@ Constraints on reionization history from simulation
@ MCMC Analysis

@ Results
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Moftivation

® CMB forms the foundation of precision cosmology

@ CMB anisotropies are sourced by primordial
perturbations produced by inflation

@ Their growth is modified by the joint action of dark
matter, baryonic matter and radiation
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@ Precise test of cosmological parameters
@ Subject to cosmological foregrounds

@ Ionization of intergalactic gas by UV and X-ray
radiation (aka reionization) forms a screen in front
of the CMB.

@ Last major systematic effect.
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Adapted reionization history

@ Counting the number of ionizing photons per
atom, N, /a

1.0

@ TwWo sources:

0.8

=~ 0.6

@ Star forming galaxies

0.4

0.2

quasars 0o

"0 2 4 o6 8 10 12 14 16 18 20
z

@ Quasars:

g
14.4eVn,

fs1(x)

|

Secondary ionization
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Two contributions:

@ Contribution from quasars: estimated by
studying the evolution of massive black holes
within the quasar

@ Contribufion from galaxies: extrapolating the
observed UV luminosity functions of high
redshift galaxies (Bowens et al. 2007, 2008)
+ using an estimate of relative escape

fraction of the ionizing radiation from Gnedin
et al. (2007)
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MCMC Analysis:

® Dependance of estimated cosmological
parameters on the assumed reionization
history

1 Instantaneous reionization

Physically motivated reionization: VG

O General reionization history parametrized
in terms of principle components with

respect to E-mode polarization
(Hu & Holder, Mortonson & Hu)

re(z) = 289 + Z miS;(2)
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0 Base cosmological parameters
Qbhza Qch27 (93, A87 Ur

0 Reionization :
Sudden T

VG: no free parameter
PC parametrization M1, M2, M3, M4, M5

0o WMAP7 data set
o Simulated Planck-precision data set
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Conclusions

@ Cosmological parameters
are mildly GFFeC'l'ed by 'l'he | Reionization Histories

assumption of reionization

WMARP: using PCs degrades
the constraints on
parameters.

Planck: sudden reionization
does as well as PC
reionization.

@ Using PCs does not offer an accurate reconstruction of
lonization fraction.
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