The physics of the early universe from CMB and large scale structure

Azadeh Moradinezhad Dizgah

INPA, Lawrence-Berkeley National Laboratory
November 9th, 2012

Road map of my talk

Alternatives to inflation: what sources primordial perturbations?

G.Geshnizjani, W.Kinney, A.M, Phys.Rev. D82 (2010) 083506 G.Geshnizjani, W.Kinney, A.M, JCAP 1202 (2012) 015 G.Geshnizjani, W.Kinney, A.M, JCAP 1111 (2011) 049

- Constraining cosmology from CMB
 - Constraints on mixed inflaton/curvaton perturbations
 W. Kinney, A.M., B. Powell, A. Riotto, Phys.Rev. D86 (2012) 023527
- Impact of reionization history on CMB parameter estimation

with Nick Gnedin & William Kinney, arXive: 1210.?

Probing primordial NG with DM halo profile

with Scott Dodelson & Antonio Riotto, arXive: 1210.?

Timeline of the universe

- Inflation
- Matter-radiation equality: DM inhomogenities start to collapse
- Recombination ($z\simeq 1100$): $p^++e^-\to H$ Universe becomes transparent to CMB photons (free streaming)
- Reionization ($z\simeq 10$): radiation from the first stars and quasars reionize the universe and of the photons re-scatter $\simeq 10\%$
- Structure continues to grow

Scale-invariant perturbations: Is inflation the only way?

What do we observe in CMB

Scale-invariant perturbations $n_s = 0.963 \pm 0.014$

Super-Hubble correlated fluctuations at recombination

Larson et.al., 2011, ApJS, 192, 16

What general conclusions can be made about the physics of early universe?

Result in short

In an expanding universe, to obtain perturbations consistent with observation at least one of these three conditions must be satisfied:

- Accelerated expansion, i.e. inflation
- Super-luminal speed of sound
- Super-Planckian energy density

Canonical Case:

In terms of Mukhanov-Sasaki variables:

$$v \equiv z\zeta,$$

$$z = a\sqrt{2\epsilon}$$

The mode equation in Fourier space given by:

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0$$

Scale-Invariance:

$$\frac{z''}{z} = \frac{2}{\tau^2} \equiv R_{\zeta}^{-2}$$

Generation of perturbations

Horizon Crossing and scales

Assume decelerated expansion:

$$\epsilon > 1 \to \dot{R}_H > 0$$

Horizon crossing:

$$\lambda_i(\tau_i) = R_{\zeta}(\tau_i) = |\tau_i|$$

$$\lambda_f = R_{\zeta}(\tau_f) = |\tau_f| > R_H(\tau_f)$$

© CMB + LSS: $\lambda_i > 1000 \lambda_f$

$$\frac{\tau_f - \tau_i}{R_H(\tau_f)} > 1000$$

Energy Density

© Continuity equation:
$$\frac{\dot{\rho}}{\rho} = -2\epsilon H$$

$$ln\frac{\rho_i}{\rho_f} = 2\int_{t_i}^{t_f} \epsilon H dt = 2\int_{\tau_i}^{\tau_f} \epsilon R_H^{-1} d\tau$$

$$> 2R_H^{-1}(\tau_f) \int_{\tau_i}^{\tau_f} \epsilon d\tau \quad (\dot{R}_H > 0)$$

$$> 2R_H^{-1}(\tau_f)(\tau_f - \tau_i) \quad (\epsilon > 1)$$

Super-Planckian energy density

© CMB + LSS
$$\frac{ au_f - au_i}{R_H(au_f)} > 1000$$

Continuity:

$$ln\frac{\rho_i}{\rho_f} > 2\frac{\tau_f - \tau_i}{R_H(\tau_f)} > 2000$$

$$\rho_i > 10^{868} \rho_f!$$

$$\rho_f \ge (100 \ Mev)^4 \to \rho_i \gg M_p^4$$

Non-Canonical Case

Quadratic action for curvature perturbations:

$$S_2 = \frac{M_{pl}^2}{2} \int dx^3 d\tau z^2 \left[\left(\frac{d\zeta}{d\tau} \right) - c_s(\tau)^2 (\nabla \zeta)^2 \right]$$

Through a time transformation: $dy = c_s d\tau$

$$S_2 = \frac{M_{pl}^2}{2} \int dx^3 dy q^2 \left[\left(\frac{d\zeta}{dy} \right) - (\nabla \zeta)^2 \right]$$

where:

$$z \equiv rac{a\sqrt{2\epsilon}}{c_s} \qquad q \equiv rac{a\sqrt{2\epsilon}}{\sqrt{c_s}}$$

Khoury and Piazza, JCAP 0907:026,2009

Non-Canonical Case, contd.

In terms of Mukhanov-Sasaki variables:

$$v \equiv q\zeta \qquad q = \frac{a\sqrt{2\epsilon}}{\sqrt{c_s}}$$

The mode equation in Fourier space is given by:

$$v_k'' + (k^2 - \frac{q''}{q})v_k = 0$$

 ${\it o}$ Scale-invariance condition: $\frac{q''}{q} \propto \frac{2}{y^2}$

Horizon Crossing and scales

- Assume decelerated expansion: $\epsilon > 1 \rightarrow \dot{R}_H > 0$
- Horizon crossing : $\lambda_i(au_i)=R_\zeta(au_i)=| au_i|$ $\lambda_f=R_\zeta(au_f)=| au_f|>R_H(au_f)$

$$y_f - y_i = \int_{\tau_i}^{\tau_f} c_s d\tau = \bar{c}_s(\tau_f - \tau_i)$$

© CMB + LSS: $\lambda_t > 1000\lambda_f$

$$\frac{\bar{c}_s(\tau_f - \tau_i)}{R_H(\tau_f)} > 1000$$

Super-luminal speed of sound

CMB + LSS
$$\frac{\bar{c}_s(\tau_f - \tau_i)}{R_H(\tau_f)} > 1000$$

Continuity:
$$ln \frac{\rho_i}{\rho_f} > 2 \frac{(\tau_f - \tau_i)}{R_H(\tau_f)} > \frac{2000}{\bar{c}_s}$$

For:
$$\rho_i \leq M_{pl}^4$$

$$\rho_f \leq (100 Mev)^4$$

$$\bar{c}_s > 10$$

Result in short

In an expanding universe, to obtain perturbations consistent with observation at least one of these three conditions must be satisfied:

- Accelerated expansion, i.e. inflation
- Super-luminal speed of sound
- Super-Planckian energy density

Impact of primordial non-Gaussianity on Dark Matter halo profile

Outline II:

- Motivation
- Semi-analytical model
- Excursion set approach
 - Excursion set theory
 - Path-integral formulation
- Results

Motivation:

- CMB: perturbations small and still unprocessed
- LSS: highly evolved perturbations, Fourier modes are coupled and interact
- Successful use of LSS for probing primordial NG: identify a feature that can be caused by primordial NG and not standard gravitational instability,

Imprints on DM Halo Profile ?!

Ingredients:

Semi-analytical model for halo profile Dalal et al. arXiv: 1010.2539

NG correction to linear density field: pathintegral formulation of excursion set theory

```
Maggiore & Riotto APJ 711, 907 (2010)
Maggiore & Riotto APJ 717, 515 (2010)
Maggiore & Riotto APJ 717, 526 (2010)
```

Formation of DM halos

- Initial conditions are laid down by inflation
- Growth of perturbations under gravitational-instability
 - Linear growth: modes evolve independently

$$\delta_k \propto D(t)$$

cosmology dependent

- Non-linear growth: modes couple
 - \odot Turn around $\delta \sim 1$
 - DM = collisionless -> Shell crossing
- Merger and accretion events

- Structure formation is a messy process
- N-body simulations show regularity in properties of halos:
 - ø density profile, abundance, clustering
- Can we explain this universality?
- Dalal et al.: crude semi-analytical model to explain the main physical effects in formation of halos

PNG and DM halo profile ?!

Halos form from the peaks of smoothed initial (Gaussian random) density field

properties of initial density peaks --> properties of halos

- Dalal et al. :
 - Properties of initial peaks
 - mapping from peaks to halos (collapse model)

Origin of NFW halo profile

Adiabatic contraction:

adiabatic invariant:
$$J_r \equiv \oint v_r dr \propto [r \times M(r)]^{1/2}$$

Given its value before the collapse (turn around), predict its value at later times

@ turn around:
$$M_L imes r_{ta} \propto M_L^{4/3}/\bar{\delta}_{\rm lin}$$

we can predict the halo profile given the initial peak profile

Dynamical friction:

- Naive Gaussian statistics of the peaks (BBKS): $P(X|Y) = P(\bar{\delta}_{lin}(r_L)|\delta_{pk}, \delta'_{pk})$
- The naive calculation ignores the hierarchy of peaks within peaks for CDM
- During the collapse, processes such as dynamical friction drag off-center subpeaks to the center
- Simple model: densest material comes from the highest sub-peaks that collapse first ->> statistics of highest sub-peaks

$$P_1(y) = \int_{-\infty}^{y} \frac{dP}{dx} \longrightarrow P_N(y) = P_1(y)^N$$

Linear Density Field

Mass Profile

Dalal et al. arXiv: 1010.2539

Origin of NFW halo profile

Adiabatic contraction:

adiabatic invariant:
$$J_r \equiv \oint v_r dr \propto [r \times M(r)]^{1/2}$$

Given its value before the collapse (turn around), predict its value at later times

@ turn around:
$$M_L imes r_{ta} \propto M_L^{4/3}/ar{\delta}_{
m lin}$$
)

PNG

we can predict the halo profile given the initial peak profile

Excursion set theory

Study the evolution of $\delta(R)$ as a function of R

Bond, Cole, Efstathiou and Kaiser (1991) Peacock and Heavens (1990)

 $\begin{array}{l} At \ R = \infty, \delta(R) = 0 \\ \text{Lowering} \ R, \delta(R) \text{ evolves} \\ \text{stochastically} \end{array}$

- Time: $S=\sigma^2(R)$ At $R=\infty, S=0$ R decreases, S increases
- Probability of forming a halo mapped to first passage time problem

- lacktriangle Evolution of $\delta(S)$ is a stochastic process.
- For Gaussian density field smoothed with sharp k-space filter, $\delta(S)$ obeys Langevin equation with Dirac delta noise
- The corresponding distribution function, $\pi(\delta,S)$ is a solution to Folker-Planck equation:

$$\frac{\partial \pi}{\partial S} = \frac{1}{2} \frac{\partial^2 \pi}{\partial \delta^2} \quad \xrightarrow{\text{BCs}} \quad \frac{\Pi(\delta, S)|_{\delta = \delta_c} = 0}{\Pi(\delta, S)|_{\delta \to \pm \infty} = 0}$$

Probability of first crossing:

$$\mathcal{F} = -\frac{1}{2} \frac{\partial \Pi}{\partial \delta} \bigg|_{\delta = \delta_c}$$

Path-integral formulation

© Compute the probability distribution of $\delta(S)$ in terms of its correlators

$$<\delta(S_1) \ \delta(S_2)>_c, \ <\delta(S_1) \ \delta(S_2) \ \delta(S_3)>_c, \dots$$

- lacktriangle Not solve PDE for $\pi(\delta,S)$
- © Constructs it by summing over all trajectories that never exceeded the threshold, i.e path integral.

- © Consider ensemble of trajectories all starting from $\delta(S_0=0)=0$ and follow them for time S
- \bullet Discretize time interval [0,S] into steps, $\Delta S=\epsilon$ so that $S_k=k\epsilon$
- A discretized trajectory is a set of values $\{\delta_1,\delta_2,...,\delta_n\}$ where $\delta(S_i)=\delta_i$
- Find the probability of arriving at point δ_n at time S_n through trajectories that have never exceeded some threshold,

$$\Pi_{\epsilon}(\delta_{0}; \delta_{n}; S_{n}) \equiv \int_{-\infty}^{\delta_{c}} d\delta_{1} \dots \int_{-\infty}^{\delta_{c}} d\delta_{n-1}$$

$$W(\delta_{0}; \delta_{1}; \dots \delta_{n-1}; \delta_{n}; S_{n})$$

where:

$$W \equiv \langle \delta_D(\delta(S_1) - \delta_1)...\delta_D(\delta(S_n) - \delta_n) \rangle$$

Using integral representation of Dirac delta:

$$\delta_D(x) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\lambda}{2\pi} e^{-i\lambda x}$$

We have:

$$W(\delta_0; \delta_1; ...; \delta_n; S_n) = \int_{-\infty}^{\infty} \frac{\mathrm{d}\lambda_1}{2\pi} ... \frac{\mathrm{d}\lambda_n}{2\pi} e^{i \sum_{i=1}^n \lambda_i \delta_i}$$

$$\times \langle e^{-i \sum_{i=1}^n \lambda_i \delta(S_i)} \rangle$$

The expectation value e^{-i} in the can be written as:

$$= \exp \left[\sum_{p=2}^{\infty} \frac{(-i)^p}{p!} \sum_{j_1, \dots, j_p=1}^n \lambda_{j_1} \dots \lambda_{j_p} \langle \delta(S_{j_1}) \dots \delta(S_{j_p}) \rangle_c \right]$$

connected p-point function

- For Gaussian case only $<\delta(S_i)\delta(S_j)>_c$
- For NG case higher order correlators should be included

What we need?

Conditional probability: $P(\delta_n | \delta_0, \delta_1)$

$$P(\delta_n|\delta_0,\delta_1) = \frac{\Pi_{NG}(\delta_0;\delta_1;\delta_n)}{\Pi_{NG}(\delta_0;\delta_1)}$$

$$\Pi_{NG}(\delta_0; \delta_1; \delta_n) = \Pi_G(\delta_0; \delta_1; \delta_n) + \Delta \Pi_{NG}(\delta_0; \delta_1; \delta_n)$$

$$\Delta\Pi_{NG}(\delta_0; \delta_1; \delta_n) = \frac{(-1)^3}{6} \sum_{i,j,k=0}^{1} \langle \delta_i \delta_j \delta_k \rangle \partial_i \partial_j \partial_k W_G(\delta_0; \delta_1; ... \delta_n)$$

$$P_{NG}(\delta_n|\delta_0,\delta_1) = P_G(\delta_n|\delta_0,\delta_1) + \Delta P_{NG}(\delta_n|\delta_0,\delta_1)$$

$$\begin{split} \Delta P_{NG}(\delta_n, \delta_0, \delta_1) = & -\frac{1}{2} \sum_{i,j=0}^{1} <\delta_i \delta_j \delta_n > \partial_i \partial_j \partial_n P_G(\delta_n | \delta_0, \delta_1) \\ & -\frac{1}{2} \sum_{i,j=0}^{1} <\delta_i \delta_n^2 > \partial_i \partial_n^2 P_G(\delta_n | \delta_0, \delta_1) \\ & -\frac{1}{6} \sum_{i,j=0}^{1} <\delta_n^3 > \partial_n^3 P_G(\delta_n | \delta_0, \delta_1) \end{split}$$

Rionization history and CMB parameter estimation

Outline III:

- Motivation: CMB and Reionization
- Basics of Reionization
- Constraints on reionization history from simulation
- MCMC Analysis
- Results

Motivation

- CMB forms the foundation of precision cosmology
- CMB anisotropies are sourced by primordial perturbations produced by inflation
- Their growth is modified by the joint action of dark matter, baryonic matter and radiation

- Precise test of cosmological parameters
- Subject to cosmological foregrounds
- Ionization of intergalactic gas by UV and X-ray radiation (aka reionization) forms a screen in front of the CMB.
- Last major systematic effect.

Reionization simulations

z = 6.3

z = 5.5

Gnedin et. al (2008)

- Formation of the first luminous objects
- Overlap of the ionized bubbles
- End of reionization

Adapted reionization history

© Counting the number of ionizing photons per atom, N_{γ}/a

- Two sources:
 - Star forming galaxies
 - @ Quasars:

1.0

0.8

 $N_{\gamma}/a = N_{\gamma/a,*} + \underbrace{\frac{U_{\gamma}}{E_{\gamma}n_a}}_{\text{Normal of the properties of the pro$

Stellar population

Secondary ionization

Two contributions:

- © Contribution from quasars: estimated by studying the evolution of massive black holes within the quasar
- © Contribution from galaxies: extrapolating the observed UV luminosity functions of high redshift galaxies (Bowens et al. 2007, 2008) + using an estimate of relative escape fraction of the ionizing radiation from Gnedin et al. (2007)

MCMC Analysis:

- Dependance of estimated cosmological parameters on the assumed reionization history
 - ☐ Instantaneous reionization
 - ☐ Physically motivated reionization: VG
 - ☐ General reionization history parametrized in terms of principle components with respect to E-mode polarization

(Hu & Holder, Mortonson & Hu)

$$x_e(z) = x_e^{\text{fid}} + \sum_i m_i S_i(z)$$

• Flat ΛCDM

□ Base cosmological parameters

$$\Omega_b h^2, \Omega_c h^2, \theta_s, A_s, n_s$$

□ Reionization:

Sudden au

VG: no free parameter

PC parametrization m_1, m_2, m_3, m_4, m_5

- Data sets:
 - □ WMAP7 data set
 - □ Simulated Planck-precision data set

Conclusions

© Cosmological parameters are mildly affected by the assumption of reionization

WMAP: using PCs degrades the constraints on parameters.

Planck: sudden reionization does as well as PC reionization.

Using PCs does not offer an accurate reconstruction of ionization fraction.