Diffuse gas in galaxy clusters On the thermal and non-thermal components

Rémi Adam INPA seminar — 24/04/2020

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ -rays

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ-rays

Starting from primordial fluctuations

A very homogeneous Universe, with tiny fluctuations

From large scale fluctuations to galaxy clusters

 The primordial fluctuations collapse in the expanding Universe

From large scale fluctuations to galaxy clusters

- The primordial fluctuations collapse in the expanding Universe
- To form clusters: the largest gravitationally bound structures

Galaxy clusters are peaks in the matter density field

Cosmology with cluster counts

Survey detection	Model
\mathbf{Y}	¥
$dN = \int \chi (z)$	d^2N
$\overline{dz} = \int \chi(z)$	$(M) \frac{dzdM}{dzdM} \frac{dM}{1}$
' Selection function	Mass-obs. relations

Cosmology with cluster counts

Sensitive to geometry, dark matter/energy and gravitation

Key ingredients: mass + observational properties

Optical & infrared:

- Galaxies
- Stellar population

Optical & infrared:

- Galaxies
- Stellar population
- Lensing mass

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

- Bremsstrahlung thermal gas emission
- ➡ Gas density
- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

- Bremsstrahlung thermal gas emission
- ➡ Gas density
- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium
- Sunyaev-Zel'dovich effect:
- Inverse Compton (e⁻ + CMB)
- Thermal gas pressure
- Line-of-sight gas momentum

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

- Bremsstrahlung thermal gas emission
- ➡ Gas density
- ➡ Spectroscopic temperature (~10⁸ K)
- ➡ Mass from hydrostatic equilibrium
- Sunyaev-Zel'dovich effect:
- Inverse Compton (e- + CMB)
- Thermal gas pressure
- Line-of-sight gas momentum
- <u>Radio (+ γ-rays)</u>:
- Non-thermal emission (+DM?)
- Particle acceleration

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

- Bremsstrahlung thermal gas emission
- ➡ Gas density
- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium

Sunyaev-Zel'dovich effect:

- Inverse Compton (e⁻ + CMB)
- Thermal gas pressure
- Line-of-sight gas momentum

<u>Radio (+ γ-rays)</u>:

- Non-thermal emission (+DM?)
- Particle acceleration

Optical & infrared:

- Galaxies
- ➡ Stellar population
- Lensing mass

<u>X-ray</u>:

• Bremsstrahlung thermal gas emission

➡ Gas density

- ➡ Spectroscopic temperature (~10⁸ K)
- Mass from hydrostatic equilibrium

Sunyaev-Zel'dovich effect:

- Inverse Compton (e- + CMB)
- Thermal gas pressure
- Line-of-sight gas momentum

<u>Radio (+ γ-rays)</u>:

- Non-thermal emission (+DM?)
- Particle acceleration

Huge complementarity from different wavelengths

Shaping clusters observables with astrophysics

In surveys, observables are used as mass proxies At 1st order, they are fully determined by M and z

log M

Shaping clusters observables with astrophysics

[Sun et al. (2006)]

Turbulences in the gas

[Walker, et al. (2017)]

[CXO press release]

[Markevitch (2010)]

In surveys, observables are used as mass proxies At 1st order, they are fully determined by M and z

But rich astrophysical processes are at play

- Mergers / Shocks / turbulences
- Dark matter / hot gas / galaxies interactions
- Feedback from compact sources (AGN, SN)
- Particle acceleration
- ...

Shaping clusters observables with astrophysics

In surveys, observables are used as mass proxies At 1st order, they are fully determined by M and z

But rich astrophysical processes are at play

- Mergers / Shocks / turbulences
- Dark matter / hot gas / galaxies interactions
- Feedback from compact sources (AGN, SN)
- Particle acceleration

• ...

Affecting the observables

- Morphology, substructure
- Gas thermodynamics (pressure, density, ...)
- Non-thermal pressure from cosmic rays
- Galaxy colors

• ...

Very rich physics, to be controlled for cosmology

Cosmology

What is the nature of dark matter? What causes the accelerating expansion of the Universe: Λ, dark energy, modified gravity?

co-evolution

Dark matter ("simple")

Gas and galaxies (not so "simple")

Astrophysics

How does the baryonic matter co-evolve with the dark matter to shape the Universe?

[Illustris simulation]

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ-rays

A key observable, the Sunyaev-Zel'dovich effect

The SZ effect is the inverse Compton scattering of γ_{CMB} + e⁻_{cluster}

$$\Delta I_{\rm tSZ} \propto f(\nu) \int P_e d\ell$$

- Brightness independent of redshift
- Sensitive to thermal pressure
- Closely tracks the total mass

Excellent probe for the hot gas in distant clusters

Cluster cosmology after Planck

- Detailed study of nearby clusters [Planck V, VIII, X (2013)]
- All-sky catalog (1653 objects) & map [Planck XXIX (2013), XXVII & XXII (2015)]
- Number count constraints [Planck XX (2013), Planck XXIV (2015)]

CMB & clusters & hydro sim in tension Astrophysical mismodeling? Missing physics in simulations? In ACDM? Statistical fluctuation?

Need for resolved observations up to high redshift

NIKA2: the New IRAM KIDs Array 2

Excellent for resolving distant clusters

A first look at the data

Sub-mm and radio galaxies can bias the SZ signal

Cleaning the 'contaminant' galaxies

[Adam et al. (2016)]

Strong impact on the morphology...

It is crucial to account for contaminant sources

Substructure and merger detection

Gas temperature from X-ray+SZ imaging

- Temperature fundamental for astro & cosmo
 - Mass calibration
 - Cluster dynamical state
- Systematics in X-ray spectro. + challenging at high z

$\Rightarrow k_{\rm B}T = P_e/n_e$ $tSZ \checkmark \checkmark X-ray$

Independent cross-check of X-ray spectro.

10⁻³ keV/cm³

Done in 1D and 2D

tSZ pressure

(NIKA)

Excellent to obtain the temperature at high z

10⁻³ cm⁻³

X-ray density

MM

Direct mass measurement from X-ray+SZ

Access to the mass, the SZ flux, and the cluster dynamics (morphology)

In depth study of SZ-mass calibration available

Implication of substructures on the SZ - mass scaling relation

Diffuse gas in galaxy clusters - Rémi Adam - INPA, 24/04/2020

 10^{15}

SZ imaging at low mass and high redshift

Follow-up of XXL-survey clusters in unexplored regime from resolved SZ data (z=1, M₅₀₀<3x10¹⁴ M_{sun}, [Ricci et al. (2020)])

Preliminary results on the first target:

SZ imaging at low mass and high redshift

Follow-up of XXL-survey clusters in unexplored regime from resolved SZ data (z=1, M₅₀₀<3x10¹⁴ M_{sun}, [Ricci et al. (2020)])

Preliminary results on the first target:

- Large scale X/SZ agreement, but local deviations due to substructures
- Huge ICM/galaxies offset

A new low mass bullet cluster at z~1

SZ imaging at low mass and high redshift

Pressure profile and scaling consistent with expectations from local sample

The NIKA2 guaranteed time SZ large program

In depth population study of the intra-cluster gas:

- Redshift evolution of the properties and scaling relations
- Dependence on cluster dynamical state

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ -rays

Cosmic ray and dark matter in galaxy clusters

A lot of dark matter (~80%) γ-ray from annihilation/decay

Test the nature of dark matter

 Galaxies (~few %) + thermal ionized gas (~15%) γ-ray from particle acceleration

Understand CR physics at the clusters scale

Cosmic ray physics can be constrained from y-rays

The Cherenkov Telescope Array

From ~20 GeV to 200 TeV γ rays Sensitivity down to ~10⁻¹² erg/cm²/s in few hours ~3 arcmin angular resolution above 1 TeV Expected to start observations in ~2022

[https://www.cta-observatory.org/]

CTA Key Science Project: Perseus cluster to be observed for 300h

$\Gamma = 0.8$ Accretion shock

$\Gamma = 0.8$ Accretion shock

[More et al. (2015)]

Major merger shock

[Markevitch & Vikhlinin (2007)]

[Illustris TNG simulation]

Major merger shock

[Markevitch & Vikhlinin (2007)]

[More et al. (2015)]

Turbulences

[Walker, et al. (2017)]

[Illustris TNG simulation]

[More et al. (2015)]

Turbulences

[Walker, et al. (2017)]

[Illustris TNG simulation]

Major merger shock

[Markevitch & Vikhlinin (2007)]

Energy injection from AGN & SN

[Chandra press-release]

From energy injection to γ -ray emission

Particle acceleration, and γ -ray signal, is expected

Modeling the gamma ray signal

Search for γ-rays towards Coma with Fermi-LAT

Claimed detection in the direction of Coma

Search for y-rays towards Coma with Fermi-LAT

(work in progress)

- The signal would imply a CR to thermal pressure of few%
 - fine with model expectations
 - consistent with the multi-wavelength morphology

Search for y-rays towards Coma with Fermi-LAT

(work in progress)

- The signal would imply a CR to thermal pressure of few%
 - fine with model expectations
 - consistent with the multi-wavelength morphology

But accounting for a potential point source drastically reduces the significance

Fake detection due to point source contaminant?

Simulating the expected signal with CTA

(work in progress)

- VHE γ-rays from atmospheric Cherenkov imaging
- Great angular resolution + wide energy range: key to disentangle cluster from AGN
- Perseus to be observed 300h as a key science project [CTA consortium (2018)]

Major step in understanding CRp & non-thermal physics expected with CTA

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ-rays

Summary

Clusters as cosmic laboratories

- Cosmology with galaxy clusters
 - Clusters can be used to test cosmological models
 - Mass estimates are key for cluster cosmology
 - The CMB/cluster tension remains unclear
- Cluster astrophysics (to be controlled for cosmology)
 - Unique environment to study the DM-baryons co-evolution
 - Thermal properties of cluster to be tested versus M and z
 - Cosmic rays at play, but details remains poorly understood

Evolution of the thermal gas properties

- NIKA2 resolved SZ observations
 - Many results from test case demonstration
 - Multi-wavelength analysis proved powerful
- Ongoing observations of 50 clusters
 - In depth study of the gas physics
 - High z SZ-mass calibration will be available

Cosmic rays: the quest for γ-rays

- Unique view on non-thermal physics
 - Clusters are cosmic calorimeters
 - Possible Fermi detection, but still unclear
- Observations with CTA
 - CTA now under construction
 - Perseus will be the prime target

Outline

1. Clusters of galaxies as cosmic laboratories

2. Mapping the hot gas in the millimeter & X-ray

3. The quest for cluster cosmic rays in the γ -rays

4. Detecting clusters in the optical/near-IR

Detecting clusters in the optical / near IR

- Cluster masses from lensing
 - ➡ Only most massive clusters
 - ➡ Not available at high z
- Galaxies trace the total mass
 - ➡ Optical richness ~ mass

Detect galaxy overdensities in 2d+1 space

Next steps for cluster cosmology: Looking at distant clusters with Euclid

Euclid satellite: 2200 kg, 4.5x3m

ESA mission dedicated to map the geometry of the Universe and structure formation

Large and deep galaxy survey

- 15 000 deg² (wide) + 40 deg² (deep)
- ▶ 6 years of survey, starting in 2021

Visible imaging + near IR spectro/photometer

- Galaxies shapes: lensing masses
- ▶ High redshift clusters, out to z~2

New window for cluster cosmology at high z

Baseline detection algorithm of galaxy clusters with Euclid

Algorithm selection among 6 main competitors within the Euclid Cluster Challenge [Euclid collaboration et al. (2019)]

• Winner: AMICO (Adaptive Matched filter) [Bellagamba et al. (2018)]

1 deg, z=0.33

Match filtering: very efficient, but assumptions

Baseline detection algorithm of galaxy clusters with Euclid

Algorithm selection among 6 main competitors within the Euclid Cluster Challenge [Euclid collaboration et al. (2019)]

• Winner: AMICO (Adaptive Matched filter) [Bellagamba et al. (2018)]

1 deg, z=0.33

Match filtering: very efficient, but assumptions

Baseline detection algorithm of galaxy clusters with Euclid

Algorithm selection among 6 main competitors within the Euclid Cluster Challenge [Euclid collaboration et al. (2019)]

• Winner: AMICO (Adaptive Matched filter) [Bellagamba et al. (2018)]

Match filtering: very efficient, but assumptions

Towards the selection function of the cluster survey

Selection function : link between theoretical predictions & observations
Need a pure & complete sample, and well characterized (~ %)

- a) Apply cluster finders to mock galaxy samples
- b) Compare input and recovered clusters:
 - Purity: #true detections / #detections
 - Completeness: #true detections / #true clusters
 - Test detection versus cluster properties

Unprecedented redshift range with Euclid

Summary

Clusters as cosmic laboratories

- Clusters are very rich environment
 - Cosmology & astrophysics
- Astrophysical processes to be modeled for cosmology
 - The CMB/cluster tension remains unclear
 - Unique environment to study the DM-baryons co-evolution

NIKA2 SZ observations

- Resolved observations of the SZ signal
 - Many results from test case demonstration
 - Multi-wavelength analysis proved powerful
- Ongoing observations of 50 clusters
 - In depth study of the gas physics
 - High z SZ-mass calibration will be available

Cluster physics in the γ-rays

- Unique view on non-thermal physics
 - Clusters are cosmic calorimeters
 - Possible Fermi detection, but still unclear
- Observations with CTA
 - CTA is now under construction
 - Perseus will be the prime target

Future surveys in the optical/near-IR

- LSST & Euclid in preparation
- Cluster detection with Euclid
 - Unprecedented mass/redshift range
 - Selection of the AMICO code
- Cluster cosmology with Euclid
 - A new stage is to be expected
 - Robust, % level, mass calibration up to high redshift will be crucial