Candidate Signals and Stringent Constraints from Dark Matter in the Sky

Kevork Abazajian University of California, Irvine

Vs

Vs

Vs

Vs

Ve

Vs

Vs

Vs

Vc

Vs

Vs

 v_1

September 21

Lawrence Berkeley National Laboratory Research Progress Meeting

Dark Matter Today: from large scale cosmology

Cosmic Microwave Background: Planck, SPT, ACT, PolarBEAR

> Large Scale Structure: SDSS (BOSS), WiggleZ, 6dF

 $\Omega_{\rm DM} \equiv \frac{\rho_{\rm DM}}{\rho_{\rm crit}} = 0.259 \pm 0.002$

Planck 2015 + BAO + SNe + H_0 (Planck Collab. 2015)

Number of Neutrinos with Weak Interactions

Invisible decays of Z boson observed by LEP

⇒Number of neutrinos

 $N_{\nu} = 3.00 \pm 0.08$

with weak interactions

any extra v must be sterile

Neutrino Mass & Sterile Neutrinos Beyond the Standard Model of Particle Physics

- Simplest models of neutrino mass introduce sterile neutrinos (See saw models)
- Phenomenological Insertion of Majorana & Dirac Mass Terms:

 $\mathcal{L} \supset -y_{\alpha i} L_{\alpha} N_i H - \frac{1}{2} M_{ij} N_i N_j + H.c.$ (e.g. ν SM de Gouvêa 2005; ν MSM Asaka et al 2005)

• Two massive (>100 GeV) sterile neutrinos are required by atmospheric and solar neutrino mass scales

Note: $eV \neq keV$

short baseline $v \neq dark$ matter v

Dark Matter Neutrinos

Sterile Neutrinos as Dark Matter: History

- "Super-weak" neutrinos (G < G_F) [Olive & Turner, 1982]: Earlier Decoupling, abundance set by standard dark matter production mechanism of decoupling temperature and degrees of freedom disappearance
- "Sterile" neutrinos [Dodelson & Widrow, 1993]: No SM interactions beyond mass terms, inclusion of finite-temperature modifications to self-energy, lack of thermalization. WDM.
- "Resonant" sterile neutrinos [Shi & Fuller, 1999]: Finite temperature production with non-zero lepton number resonant enhanced production. WDM to CDM. "Cool" Dark Matter.
- "Precision" Sterile Neutrino Dark Matter & <u>Proposal for X-ray</u> <u>Detection</u> [Abazajian, Fuller & Patel 2001; KA 2005]: Full momentum-space production description with QCD transition corrections, resonant to non-resonant solutions as a continuum in lepton number.

Observing the Sterile Neutrino in the X-ray: Chandra & XMM-Newton X-ray Space Telescopes

Sterile v WDM Radiative Decay in the X-ray

Decay: Shrock 1974; Pal & Wolfenstein 1981 **X-ray**: Abazajian, Fuller & Tucker 2001

 $"\nu_s" \to "\nu_{\alpha}" + \gamma$

 $E_{\gamma} = \frac{\overline{m_s}}{2} \sim 1 \text{ keV}$

 $\Gamma_{\gamma} = 1.62 \times 10^{-28} \text{ s}^{-1} \left(\frac{\sin^2 2\theta}{7 \times 10^{-11}}\right) \left(\frac{m_s}{7 \text{ keV}}\right)^5$

Virgo Cluster: 1078 DM particles

Slíde from 2001

Current Limits

Future Detection?

Best constraints are from Horiuchi+ 2013

Combined subhalo and X-ray constraints: exclude standard DW dark matter v_s

Horiuchi, Humphrey, Abazajian & Kaplinghat, PRD arXiv:1311.0282

Forecast X-ray Observation Sensitivity for Constellation-X Abazajian, Fuller & Tucker 2001

The Detection of an Unidentified Line

Bulbul et al. ApJ arXiv:1402.2301

Chandra X-ray M31 plus substructure constraints

Combined subhalo and X-ray constraints: exclude standard v_s

Horiuchi, Humphrey, Abazajian & Kaplinghat, PRD 2013

The Detection of an Unidentified Line II

Boyarsky et al. PRL arXiv:1402.4119

Metal Lines in Clusters at 3.5 keV? unlikely

- Most lines at this energy are too low in flux for the typical plasma temperatures
- Those that could be close, Ar XVII DR, would have accompanying lines that make its flux a factor of 30 too low

CX lines at ~3.5 keV?

Betancourt-Martinez+ 2014; Gu+ 2015; Shah+ arXiv:1608.04751

CX line(s) at 3.44 - 3.47 keV while unidentified line at 3.57±0.025 keV (Perseus) 3.57±0.02 keV (MOS stack) 3.51±0.03 keV (PN stack)

Confirmation hope: Hitomi (Astro-H) X-ray Telescope

Successful launch Feb. 17 Loss of satellite March 26

NASA Build-to-print SXS for XARM launch March 2021

Following

Richard Kelley: #Hitomi X-ray Astronomy Recovery Mission (#XARM) approved in Japan and USA! Launch ~03/2021. Remarkably quick turnround.

 RETWEETS
 LIKES

 7
 7

 7
 7

 7
 7

 7
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8

Hitomi X-ray Telescope: Few Days of Data

Unprecedented energy resolution: factor ~50 higher

Hitomi X-ray Telescope: Expected line or not?

NuSTAR: the best current telescope?

Shielding gap in telescope lets in 0 bounce photons. 37 deg² aperture!

Perez+: GC no signal, limits Neronov+: Deep field sees 11.1σ 3.5 keV line consistent with DM decay

Chandra Deep Fields: 10 Ms of data

Cappelluti+ 2017: see the line at 3σ in ~10 Ms of COSMOS Legacy and
Chandra Deep Field South observations,
Rule out instrumental feature based on detailed characterization of response,
Rule out CX & Ar lines due to lack of partner lines
(K shown to be incompatible in 2014)

Sterile Neutrino Dark Matter: Parameter Space Summary

The 7 keV Region Today

1508.05186**Cluster search: Iakubovskyi+**

Confirmation? Sounding Rocket X-ray Observations: Micro-X & XQC

Figueroa-Feliciano+ 1506.05519

Next Space Mission in X-ray Astronomy

X-ray Astronomy Recovery Mission (XARM) ~2021

XARM will carry two instruments for studying the soft X-ray energy range: Build-to-print SXT-S (Soft X-ray Telescope for Spectrometer) & updated in energy resolution SXT-I (Soft X-ray Telescope for Imager).

Confirmation? XARM

Future Space X-ray Astronomy

Athena

about 2028

Goals:

 Microcalorimeter spectroscopy (R≈1000)

$$R = \frac{\lambda}{\Delta \lambda} \bigg)$$

Chandra

Wide, medium-sensitivity surveys

Area is built up at the expense of coarser angular resolution (10×) & sensitivity (5x)

Lynx X-ray Surveyor

- 50× sensitivity
- R≈1000 spectroscopy on 1" scales adds 3rd dimension to the data
- $R \approx 5000$ spectroscopy for point sources
- ✓ Area is built up while preserving Chandra angular resolution (0.5")
- ✓ 10× field of view with fine imaging

[Courtesy Alexey Vikhlinin]

Confirmation? kinematic searches in nuclear β -decay

0000

Confirmation? kinematic searches in nuclear β -decay

Confirmation Method #4: full kinematic reconstruction of K-capture nuclear decay

Original studies: Finocchiaro & Schrock 1992

CACHE (Cesium Atomic-electron Capture with Heavy neutrino Emission)

¹³¹Cs Ion trap proposal: Peter Smith+ arXiv:1705.06876

Issues in Cosmological Small-scale Structure?

Dwarf galaxies around the Milky Way are less dense than they should be if they held cold dark matter

WDM Solution to All Local Group Galaxy Properties?

Anderhalden et al. arXiv:1212.2967 "It seems that only the pure WDM model with a 2 keV [thermal] particle is able to match the all observations" of the Milky Way Satellites: "the total satellite abundance, their radial distribution and their mass profile" (or TBTF)

What is the relationship between particle mass and warm dark matter effects?

"It seems that only the pure WDM model with a 2 keV [thermal] particle is able to match the all observations" of the Milky Way Satellites: "the total satellite abundance, their radial distribution and their mass profile" (or TBTF)

$$\lambda_{\rm FS} = \int_0^{\rm EQ} \frac{v(t)dt}{a(t)} \approx 40 \,\mathrm{Mpc}\left(\frac{30\,\mathrm{eV}}{m_\nu}\right) \left(\frac{\langle p/T\rangle}{3.15}\right)$$

Cowsik-McClelland/Gershtein-Zeldovich bound: $\Omega = \frac{M}{94.1h^2 \,\mathrm{eV}} < 1$

7 keV Resonant Sterile Neutrino: Free streaming cutoff is very different, even for the same particle mass

WIMP Annihilation gamma rays in the Galactic Center?

CDM structure: all of this should be annihilating today...

The Signal Projected in Galactic Coordinates

total emission

Galactic Center

-0.50

Dwarf Galaxies

2.0 Log(Intensity)

Springel et al 2008

Let's just go ahead and look...

Evidence for an extended source consistent with a dark matter interpretation:

Hooper & Goodenough, 2010 Hooper & Linden, 2011 Boyarsky et al. 2011

Abazajian & Kaplinghat 2012

Gordon & Macias (2013), Cirelli et al. (2013), Abazajian et al. (2014), Daylan et al (2014), Calore et al. (2014), Abazajian et al (2015), Ackermann et al (2015)

5 10 Residual Counts 8 10 0 Residual Counts

Б

10 Residual Counts 4 6 8 Residual Counts

- Requires the flux from the GC MSPs to be 200 times that in Omega Cen reasonable stellar mass is 800 times
- •Spectrum is consistent Γ =0.45 ± 0.21 and E_c = 1.65 ± 0.2 GeV
- •Requires a centrally concentrated density profile $n \sim r^{-2.6}$, which is seen for the central density distribution of LMXBs in M31
- Point source consistent with non-Poisson statistics (Lee+ 2015; Bartels+ 2015)

GCE as MSPs: Spectral Comparison

End of GCE and start of Stellar Bulge Gamma-rays?

GCE match with WISE IR X-map: Macias+ arXiv:1611.06644 Luminosity function consistency: Ploeg+ arXiv:1705.00806

Signal Parameters: forecasts for dwarf galaxy sensitivities *in* 2013

Dwarf Galaxies Searches Remain Mostly Dark

Bright GCE, Dim Dwarfs: Strong Tension!

Where is the dark matter signa? Dwarf/GCE Tension & Tool-building

Keeley, Abazajian, Kwa, Rodd, Safdi (in preparation)

Summary

- Sterile Neutrino Dark Matter has been investigated for 24+ years; indirect detection via cluster & field galaxy searches proposed by yours truly in 2001.
- An unidentified line has been detected at 4σ to 5σ in two independent samples of stacked X-ray clusters with XMM-Newton. It was seen by the same group in the Perseus Cluster with Chandra data. (Bulbul et al. ApJ 2014). An independent group reported a line at the same energy toward Andromeda (M31) and Perseus with XMM-Newton (Boyarsky et al. PRL 2014).

• Also seen:

- in our Milky Way Galactic Center (*XMM-Newton*)
- with *SUZAKU* X-ray Space Telescope data toward Perseus,
- in 8 more clusters at > 2σ significance.
- Seen in *Chandra* deep fields (Galactic Halo)

• No consistent astrophysical interpretation exists.

Summary

- The simplest model for the signal is resonant sterile neutrino production with a cosmological *L*. The signal crosses a transition region from "cold" dark matter to "warm" dark matter, particularly at a small-scale structure cutoff scale of great interest in galaxy formation of the local group of galaxies, ~2 keV thermal WDM.
- Future Follow up observations:
 - 2017-2018: Micro-X, XQC
 - 2021: XARM
 - 2028+: ATHENA
 - 2030+: X-Ray Surveyor
- "Space will not be conquered by missiles... but by the impregnation of all of space with human sensibility."
 Yves Klein (1962)

Summary

- The γ -ray excess in the Galactic Center is a whopping signal (~13 σ) that is *in itself* consistent with dark matter annihilation of ~40 GeV WIMPS to *b*-quarks or ~10 GeV to *\tau*-leptons.
- Since 2010, we have known of an astrophysical interpretation of the γ-ray excess in the GC: a standard population of millisecond pulsars. Spectrum, flux and morphology are consistent with MSPs, most closely following stellar X-bulge. Luminosity function is also consistent.
- DM interpretation in > 5σ tension with dwarf galaxies in most measures of local DM density [Abazajian & Keeley 2016, Keeley+ 2017]
- DM models that discriminate between GC and dwarf galaxies can survive constraints, e.g. SIDM models. Abazajian & Keeley 2016, Keeley+ 2017 releasing tools to test your favorite model.