Robust and Precise Physical Measurements using Galaxy Surveys: Successes from BOSS and Lessons for the Future

The Ohio State University

Ashley J. Ross

BOSS Galaxy Clustering working group, DES LSS working group, eBOSS Quasar and Galaxy Clustering working group

Outline

- Fundamental cosmological questions
- The Baryon Oscillation Spectroscopic Survey (BOSS): a galaxy redshift survey
 - Measuring galaxy clustering
 - Addressing fundamental questions with BOSS
- Details
 - Observational systematics
 - (Theoretical systematics)
- (very) Recent and Future results
 - BOSS DR12, eBOSS, DES, DESI

Current Cosmological Model

- Flat, 96% "dark"
- what is dark energy?
- modify GR?*
- why is there structure at all?*
- what is the mass of the neutrino?

Current Cosmological Model

- Flat, 96% "dark"
- what is dark energy?
- modify GR?*
- why is there structure at all?*
- what is the mass of the neutrino?

The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS): Mapping the structure of the Universe

LBNL INPA Seminar

SDSS-III BOSS

- Sloan Digital Sky Survey
- Uses Sloan telescope at
- Apache Point NM
- BOSS uses:

 SDSS ugriz imaging to select:
 I.5 million galaxies I.5x10⁵ quasars (out of 3.6x10⁸ sources)

 BOSS spectrograph 3600Å < λ < 10,000Å

 $R = \lambda / \Delta \lambda = 1300 - 3000$ 1000 spectra at a time

Ashley J. Ross

LBNL INPA Seminar

- DR8 imaging 14,555 deg²
- I0,000 deg² good for BOSS
- DR9 footprint 3345 deg²
- DRI0 6300 deg²
- DRII 8500 deg² (current published results)
- DR12 10,000 deg²; raw data public, results imminent

LBNL INPA Seminar

- DR8 imaging 14,555 deg²
- I0,000 deg² good for BOSS
- DR9 footprint 3345 deg²
- DRI0 6300 deg²
- DRII 8500 deg² (current published results)
- DR12 10,000 deg²; raw data public, results imminent

LBNL INPA Seminar

- DR8 imaging 14,555 deg²
- I0,000 deg² good for BOSS
- DR9 footprint 3345 deg²
- DRI0 6300 deg²
- DRII 8500 deg² (current published results)
- DR12 10,000 deg²; raw data public, results imminent

Ashley J. Ross

LBNL INPA Seminar

- DR8 imaging 14,555 deg²
- I0,000 deg² good for BOSS
- DR9 footprint 3345 deg²
- DRI0 6300 deg²
- DRII 8500 deg² (current published results)
- DR12 10,000 deg²; raw data public, results imminent

LBNL INPA Seminar

- Two samples:
- 'CMASS':
- i < 19.9 + color cuts
- redshifts 0.43<z<0.7
 'LOWZ':
- r < 19.5 + color cuts
- 0.15<z<0.43

Ashley J. Ross

BOSS Galaxies

• Largest 3D map of galaxies

Observed Galaxies to 3D Map

• angles, redshifts \rightarrow comoving distance $r = ar_{\text{physical}}; a = \frac{1}{1+z}$ $r(z_1, z_2) = c \int_{z_1}^{z_2} \frac{dz}{H(z)}$ $H(z) = \frac{\dot{a}}{a} = H_0 \left(\Omega_m (1+z)^3 + \Omega_\Lambda\right)^{\frac{1}{2}}$ (flat Λ CDM)

Ashley J. Ross

Galaxy Clustering

A Small Slice of BOSS

• Need to quantify structure we see • Clustering strength = number of galaxy pairs beyond uniform random • Power spectrum $P(k) = \langle \delta_k(k)^2 \rangle$

• Correlation function $\xi(r) = \langle \delta(x) \delta(x+r) \rangle$

Ashley J. Ross

Galaxy Clustering

- Power spectrum $P(k) = \langle \delta_k(k)^2 \rangle$
- Correlation function $\xi(r) = \langle \delta(x) \delta(x+r) \rangle$
- k~2π/r
- r and s interchangeable

Baryon Acoustic Oscillations (BAO)

Baryon Acoustic Oscillations (BAO)

 early Universe radiation pressure/ matter density -> standing wave in baryon density

Ashley J. Ross

LBNL INPA Seminar

Baryon Acoustic Oscillations

• CMB measurement gives calibrated "standard ruler" for feature found in galaxies

Ashley J. Ross

LBNL INPA Seminar

BOSS DRII BAO

- I% distance measurement to z = 0.57
- 2% distance measurement to z = 0.32
- distance is: $D_V(z) = [czH^{-1}(z)D_A^2(z)(1+z)^2]^{1/3}$

Ashley J. Ross

BOSS DRII BAO

- I% distance measurement to z = 0.57
- 2% distance measurement to z = 0.32
- distance is: $D_V(z) = [czH^{-1}(z)D_A^2(z)(1+z)^2]^{1/3}$

Expansion History with BAO

Ashley J. Ross

LBNL INPA Seminar

Expansion History with BAO compared to CMB

Ashley J. Ross

LBNL INPA Seminar

Expansion History with BAO compared to CMB

Expansion History with BAO compared to CMB

Neutrino Mass

Neutrino Mass

- Neutrinos remain relativistic at later times
- suppresses formation of smaller-scale structure
- (at least) 3 ways to measure with LSS:
 - -Direct effect on P(k)
 - Effect on structure growth (e.g., Beutler et al. 2014)
 Use BAO measurements to break CMB degeneracies

Neutrino mass constraints: P(k) shape

• DR9+WMAP (Zhao et al. 2013)

∑m_v < 0.34 eV (95%; ∧CDM),
 < 0.58 eV (just BAO+CMB)

Details

Details

Observational Systematics

Potential Observational Systematics

- Atmospheric conditions (seeing, airmass)
- Background light (sky background)
- Foregrounds (stars, Galactic 'dust')
- Calibration uncertainties

Ashley J. Ross

LBNL INPA Seminar

BOSS imaging systematics

Ashley J. Ross

LBNL INPA Seminar

BOSS imaging systematics

Ashley J. Ross

LBNL INPA Seminar

Stars Occult Area

Stars and BOSS Surface Brightness

- Spectroscopic results confirm galaxy vs. stellar density relationship
- Depends on surface brightness
- Corrected with weights based on linear fits

Effect on BOSS clustering

Theoretical details

theoretical clustering of matter

observed clustering of galaxies Galaxy bias: light ≠ mass

Red and Blue Galaxies

- Galaxy population bi-modal red/ blue
- ideal for testing systematic effect from galaxy evolution

Red/Blue BOSS BAO

LBNL INPA Seminar

BOSS DR12

Ashley J. Ross

CMASS

LOWZE3

1.6

1.8

2.0

DRI2: observational systematics

Ashley J. Ross

LBNL INPA Seminar

Ashley J. Ross

Ashley J. Ross

BOSS DRI2 (final) results

- CMASS/LOWZ results are out
- Combined sample results to follow
 - Final result will be one (set of) likelihood(s) that combines
 BAO/RSD results
 - Preliminary fits look good!

Future/Starting Surveys

Current/Future Surveys

- eBOSS
 - I year of observations
 - ~I million more spectra, extending to higher redshift
- The Dark Energy Survey (DES)
 - 2 years of data taken
 - 300 million galaxies (photozs)
- Dark Energy Spectroscopic Instrument (DESI)
 - 20 million galaxy redshifts!

BAO Measurements

• Gap between 0.6 < z < 2.2

LBNL INPA Seminar

eBOSS

• Use SDSS telescope/spectrograph to extend BAO to > z

- 7500 deg² in SDSS imaging footprint
- Supplement SDSS with infrared data from WISE

Ashley J. Ross

LBNL INPA Seminar

eBOSS projections

- 3x10⁵ LRGs 0.6 < z < 1.0
- 2x10⁵ ELGs 0.7 < z < 1.1
- 6x10⁵ quasars 0.9 < z <
 2.2
- x3 improvement in DE FoM
- Early clustering measurements consistent

Ashley J. Ross

LBNL INPA Seminar

eBOSS quasars

Ashley J. Ross

LBNL INPA Seminar

eBOSS quasars

Ashley J. Ross

LBNL INPA Seminar

DES projections

- Extrapolating from science verification (SV) data:
- >10⁸ photometric redshifts over 5000 deg² of SGC
- High number density will allow precise z~1 BAO measurement

DES SV clustering

DESI

- New spectrograph on 4-meter Mayal telescope
- 20 million spectroscopic redshifts over 14,000 deg²
- Starts 2018

Conclusions

- Galaxy surveys probe fundamental physics
 - Dark energy
 - Neutrino mass
 - Origin of structure
 - Test General Relativity
- BAO measurements are especially powerful and robust probe
 - Robust against systematics
 - 1% distance measurement for DRII, DRI2 coming soon!
 - Future looks great: eBOSS, DES, DESI, (LSST, Euclid)!

Splitting BOSS by color

BOSS Red/Blue Clustering

$\xi_{Red} \sim 2\overline{\xi_{Blue}}$

BAO results

Measure shift, α , relative to model Mocks:

 $\langle \alpha \rangle_{\text{Red}} = 1.005, \langle \alpha \rangle_{\text{Blue}} = 1.002; \langle \sigma \rangle_{\text{Red}} = 0.027, \langle \sigma \rangle_{\text{Blue}} = 0.038$

Applying reconstruction: $\langle \alpha \rangle_{\text{Red}} = 0.9994, \langle \alpha \rangle_{\text{Blue}} = 0.9993; \langle \sigma \rangle_{\text{Red}} = 0.020, \langle \sigma \rangle_{\text{Blue}} = 0.030$

- Difference should not be measurable
- Finding a difference would mean

• intra-halo processes indicate important differences in inter-halo clustering

halo-mass dependent tests of methodology not sufficient

Red/Blue RSD Results

- Consistent results
- Optimal combination gives 8% improvement in measurement of f

Theoretical Details

- Red and Blue samples yield consistent results
 encouraging!
 optimal results to be obtained by weighting samples
- Ongoing studies
 - Robustness of reconstruction methods
 - Combining RSD and BAO
 - Optimal redshift binning?
 - Optimal 2D BAO fitting?

SDSS DR7 z < 0.2

• SDSS main galaxy sample (MGS):

- 0.07 < z < 0.2; g-r > 0.8; M_r < -21.2
- Cosmic variance limited
- Able to create 1000 mock samples (Howlett et al in prep.)

• Apply reconstruction to get BAO measurements

z < 0.2 BAO

Source Reconstruction

Figures from Padmanabhan et al. 2012

Primordial non-Gaussianity: Constraining models of the origin of structure

Inflation

- explains origin of structure
- f_{NL} : ~normalized skewness of produced fluctuations $\phi = \phi_g + f_{NL}(\phi_g^2 - \langle \phi_g^2 \rangle)$
- *f_{NL}* should be vanishingly small for "slow roll" inflation

Feb. 11th 2014

Ashley J Ross

SBU Cosmology Seminar

Probing Inflation with Galaxies

- f_{NL} : ~normalized skewness of primordial fluctuations $\phi = \phi_g + f_{NL}(\phi_g^2 - \langle \phi_g^2 \rangle)$
- should be vanishingly small for slow roll inflation

Measuring f_{NL} with BOSS

• Sensitive to treatment of systematics; more on this later
BOSS photoz papers: non-Gaussianity

- BOSS photozs+SDSS quasars+NVSS radio galaxies+CMB+others
- "conservative": $f_{NL} = 5 \pm 21$
- "Naive": $f_{NL} = 48 \pm 8$
- WMAP9 CMB bispectrum: -3 < f_{NL} < 77 (95% CL; Hinshaw et al., 2013)

Planck CMB bispectrum:
2.7±5.8 (Ade et al.
2013)