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The Vision for 21cm Tomography 
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E.g. Spatial curvature:!
WMAP+SDSS: !"tot= 0.01  
Planck:           !"tot=  0.003#
21cm:             !"tot=0.0002 

Mao, Tegmark, McQuinn, Zahn, 
Zaldarriaga 2008 



Vision  

Cl 
P(k) and much 

more! 

Image credit: WMAP team Image credit: Trac & Cen 2007 



Vision  

Image credit: Pritchard & Loeb 2010 



The Problem 



Image credit: de Oliveira-Costa et. al. 2008 





Outline 
•  Precision Calibration for Precision Cosmology 

– What makes calibration a new problem in 21cm 
tomography? 

– Why redundant calibration? What are some of its 
subtleties? 

– How does redundant calibration relate to traditional 
algorithms? 

•  Precision Subtraction for Precision Cosmology 
– What are some “traditional” proposals for 21cm 

foreground subtraction? 
– Can we do better? 



Precision Calibration for Precision 
Cosmology 

A. Liu, M. Tegmark, S. Morrison, A. Lutomirski, M. Zaldarriaga, 
MNRAS 408, 1029, Oct. 2010 



21cm tomography requires 
interferometer arrays 



In principle, each baseline probes a 
Fourier mode of the sky, but… 
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21cm tomography requires compact, 
redundant interferometer arrays  

•  Traditional radio astronomy: 
–  Imaging bright (SNR >> 1) localized sources in a dim 

background 

Image credit: ASKAP website 



21cm tomography requires compact, 
redundant interferometer arrays  

•  Traditional radio astronomy 
–  Imaging bright (SNR >> 1) localized sources in a dim 

background 

•  21cm tomography: 
–  Measuring dim fluctuations (SNR << 1) over a large area  



Unlike traditional interferometers, 
21cm tomography experiments have 

many redundant baselines  

Image credit: Parsons et. al. 2011 



After redundant calibration, 
redundant baselines give 

identical results 



Not (just) a theorist’s dream! 

Noordam & de Bruyn 1982 



How does this compare to other 
calibration schemes? 

•  “Traditional” point source calibration 
–  Assumes field of view contains a single point source. 

•  Self calibration 
–  Construct a model of the sky, predict measurements, iterate. 

•  Redundant calibration 
–  Requires a redundant array. 
–  Independent of the sky. 



Can we do better? 
•  Better characterization of calibration errors. 
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Average errors in $ as a function of  array size 
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Can we do better? 
•  Better characterization of calibration errors. 
•  Old, logarithmic version of redundant calibration is 

biased; new linear version is unbiased. 



Traditional methods 
exhibit a bias 

Simulated input $#

E
ns

em
bl

e 
av

er
ag

ed
 

ou
tp

ut
 $
#



Our linearized methods 
remove the bias 
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Can we do better? 
•  Better characterization of calibration errors. 
•  Old, logarithmic version of redundant calibration is 

biased; new linear version is unbiased. 
•  Correcting for deviations from perfect redundancy. 



Taylor expand the Fourier sky 



Taylor expand the Fourier sky 
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Near-redundancy may be good enough 

Image Credit: C. Williams 



Can we do better? 
•  Better characterization of calibration errors. 
•  Old, logarithmic version of redundant calibration is 

biased; new linear version is unbiased. 
•  Correcting for deviations from perfect redundancy. 
•  Self calibration and redundant calibration are special 

cases that complement each other. 

Redundant 
calibration 

Self  
calibration 

•  Sky independent 
•  Baselines must be 

perfectly redundant 

•  Solves for sky 
model 

•  Any baselines 

More baseline corrections 
More Taylor expansion terms 



Precision Foreground Subtraction 
for Precision Cosmology 

AL, Tegmark, arXiv:1103.0281, submitted to MNRAS 
AL, Tegmark, Phys. Rev. D 83, 103006 (2011) 
AL, Tegmark, Bowman, Hewitt, Zaldarriaga, 

MNRAS 398, 401 (2009) 
AL, Tegmark, Zaldarriaga, MNRAS 394, 1575 (2009) 



Foreground Modeling 



Principal components of the sky 

Image credit: de Oliveira-Costa et. al. 2008 



Principal components of the sky 

1st principal 
component 

2nd principal 
component 

3rd principal 
component 



Can we do better? 
•  Understand, using a simple theoretical toy model, why 

the foregrounds are describable using so few 
components. 



Understanding “why so few” 
components 

•  Start with a simple but realistic model. 
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Understanding “why so few” 
components 

•  Start with a simple but realistic model. 
•  Write down covariance function. 
•  Non-dimensionalize to get correlation function. 
•  To a good approximation, correlation function fits the 

following form with coherence length &c=560 MHz! 
•  Find principal components/eigenfunctions: 





Foreground Subtraction 



Method #1: Line-of-Sight 
Polynomial Subtraction 

E.g. Wang et. al. (2006), Bowman et. al. (2009), AL et. al. (2009a,b), Jelic et. al. (2008), 
       Harker et. al. (2009, 2010). 
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AL, Tegmark, Zaldarriaga, MNRAS 394, 1575 (2009) 
AL, Tegmark, Bowman, Hewitt, Zaldarriaga, MNRAS 398, 401 (2009). 
See also: Wang et. al. (2006), Bowman et. al. (2009), Jelic et. al. (2008), Harker et. al. 
(2009,2010). 



Can we do better? 



Foreground Subtraction Wish-list 
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Foreground Subtraction Wish-list 
•  Lossless 
•  Small “vertical” error bars 
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Foreground Subtraction Wish-list 
•  Lossless 
•  Small “vertical” error bars 
•  Small “horizontal” error bars/mode-mixing 

A
L

, Tegm
ark, Phys. R

ev. D
 83, 103006 (2011) 
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Foreground Subtraction Wish-list 
•  Lossless 
•  Small “vertical” error bars 
•  Small “horizontal” error bars/mode-mixing 
•  No additive noise/foreground bias 



Foreground Subtraction Wish-list 
•  Lossless 
•  Small “vertical” error bars 
•  Small “horizontal” error bars/mode-mixing 
•  No additive noise/foreground bias 

Foregrounds 
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Method #2: Fourier space filtering/
Inverse variance weighting 

For similar methods, see also N. Petrovic & S.P. Oh, MNRAS 413, 2103 (2011) 
                G. Paciga et. al., MNRAS 413, 1174 (2011) 

Fi
lte

r 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 
0.0 0.5 1.0 1.5 2.0 



Method #2: Fourier space filtering/
Inverse variance weighting 

For similar methods, see also N. Petrovic & S.P. Oh, MNRAS 413, 2103 (2011) 
                G. Paciga et. al., MNRAS 413, 1174 (2011) 
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Foregroundless scenario 



Back to our wishlist… 



Lossless? 

Line-of-Sight Polynomial Subtraction --- Lossy 

Inverse Variance Subtraction --- Lossless 



Biased? 

Line-of-Sight Polynomial Subtraction --- Biased in 
literature, fixable 

Inverse Variance Subtraction --- Unbiased 



Biased? 

Line-of-Sight Polynomial Subtraction --- Biased! 

Inverse Variance Subtraction --- Unbiased! 

But remember… 
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Biased? 

Line-of-Sight Polynomial Subtraction --- Biased! 

Inverse Variance Subtraction --- Unbiased! 

But remember… 
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Mode Mixing? 

Line-of-Sight Polynomial Subtraction --- Yes 

Inverse Variance Subtraction --- Yes, but less. 
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Mode Mixing? 

Line-of-Sight Polynomial Subtraction --- Yes 

Inverse Variance Subtraction --- Yes, but less. 
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Measurement errors? 

Line-of-Sight Polynomial Subtraction --- Larger 

Inverse Variance Subtraction --- Smaller 

Consider errors on the quantity  



Errors? 

Line-of-Sight Polynomial Subtraction --- Larger 

Inverse Variance Subtraction --- Smaller 
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Errors? 

Line-of-Sight Polynomial Subtraction --- Larger 

Inverse Variance Subtraction --- Smaller 
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Errors? 

Line-of-Sight Polynomial Subtraction --- Larger 

Inverse Variance Subtraction --- Smaller 
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Precision Calibration for Precision Cosmology 

•  Foreground modeling 
–  Know why foregrounds are describable by ~3 components 

•  Foreground subtraction and power spectrum estimation 
–  Inverse variance foreground subtraction is lossless, unbiased, 

has less mode-mixing, and gives smaller error bars. 

•  Redundant calibration 
–  Better characterization of  errors, removal of  systematic 

biases, correction for non-exact redundancy. 
–  Complements self-calibration 

Precision Subtraction for Precision Cosmology 
Foreground ^ 

And more! 


