From Theoretical Promise to Observational Reality: Calibration and Foreground Subtraction in 21cm Tomography

Adrian Liu, MIT

The Vision for 21cm Tomography

 $\Omega_{\Lambda}, \Omega_{m}, \Omega_{b}, n_{s}, A_{s}, \tau, \overline{x}_{H},$ $\Omega_{k}, m_{\nu}, \alpha, \kappa, w, f_{NL}$

E.g. Spatial curvature:

WMAP+SDSS: $\Delta\Omega_{\text{tot}} = 0.01$

Planck: $\Delta\Omega_{\text{tot}} = 0.003$

21cm: $\Delta\Omega_{\text{tot}} = 0.0002$

Mao, Tegmark, McQuinn, Zahn, Zaldarriaga 2008

Image credit: WMAP team

Image credit: Trac & Cen 2007

P(k) and much more!

Image credit: Pritchard & Loeb 2010

The Problem

Image credit: de Oliveira-Costa et. al. 2008

Outline

- Precision Calibration for Precision Cosmology
 - What makes calibration a new problem in 21cm tomography?
 - Why redundant calibration? What are some of its subtleties?
 - How does redundant calibration relate to traditional algorithms?
- Precision Subtraction for Precision Cosmology
 - What are some "traditional" proposals for 21cm foreground subtraction?
 - Can we do better?

Precision Calibration for Precision Cosmology

A. Liu, M. Tegmark, S. Morrison, A. Lutomirski, M. Zaldarriaga, MNRAS **408**, 1029, Oct. 2010

21cm tomography requires interferometer arrays

In principle, each baseline probes a Fourier mode of the sky, but...

In principle, each baseline probes a Fourier mode of the sky, but...

21cm tomography requires compact, redundant interferometer arrays

• Traditional radio astronomy:

 Imaging bright (SNR >> 1) localized sources in a dim background

Image credit: ASKAP website

21cm tomography requires compact, redundant interferometer arrays

- Traditional radio astronomy
 - Imaging bright (SNR >> 1) localized sources in a dim background
- 21cm tomography:
 - Measuring dim fluctuations (SNR << 1) over a large area

Unlike traditional interferometers, 21cm tomography experiments have many redundant baselines

Image credit: Parsons et. al. 2011

After redundant calibration, redundant baselines give identical results

Not (just) a theorist's dream!

Noordam & de Bruyn 1982

How does this compare to other calibration schemes?

- "Traditional" point source calibration
 - Assumes field of view contains a single point source.
- Self calibration
 - Construct a model of the sky, predict measurements, iterate.
- Redundant calibration
 - Requires a redundant array.
 - Independent of the sky.

Can we do better?

• Better characterization of calibration errors.

Average errors in η for an 18 by 18 square array

 $g_i \equiv e^{\eta_i + i\varphi_i}$

Average errors in η as a function of array size

Number of antenna elements in square array

Can we do better?

- Better characterization of calibration errors.
- Old, logarithmic version of redundant calibration is biased; new linear version is unbiased.

$$g_i \equiv e^{\eta_i + i\varphi_i}$$

Can we do better?

- Better characterization of calibration errors.
- Old, logarithmic version of redundant calibration is biased; new linear version is unbiased.
- Correcting for deviations from perfect redundancy.

Taylor expand the Fourier sky

Taylor expand the Fourier sky

Antenna position errors in units of λ

Near-redundancy may be good enough

Image Credit: C. Williams

Can we do better?

- Better characterization of calibration errors.
- Old, logarithmic version of redundant calibration is biased; new linear version is unbiased.
- Correcting for deviations from perfect redundancy.
- Self calibration and redundant calibration are special cases that complement each other.

Redundant calibration

More baseline corrections

More Taylor expansion terms

Self calibration

- Sky independent
- Baselines must be perfectly redundant

- Solves for sky model
- Any baselines

Precision Foreground Subtraction for Precision Cosmology

AL, Tegmark, arXiv:1103.0281, submitted to MNRAS

AL, Tegmark, Phys. Rev. D 83, 103006 (2011)

AL, Tegmark, Bowman, Hewitt, Zaldarriaga, MNRAS 398, 401 (2009)

AL, Tegmark, Zaldarriaga, MNRAS 394, 1575 (2009)

Foreground Modeling

Principal components of the sky

Image credit: de Oliveira-Costa et. al. 2008

Principal components of the sky

1st principal component

2nd principal component

3rd principal component

Can we do better?

• Understand, using a simple theoretical toy model, why the foregrounds are describable using so few components.

• Start with a simple but realistic model.

Parameter	Description	Fiducial Value	
В	Source count normalization	$4.0{\rm mJy^{-1}Sr^{-1}}$	
γ	Source count power-law index	1.75	
α_{ps}	Point source spectral index	2.5	
σ_{α}	Point source index spread	0.5	
A_{sync}	Synchrotron amplitude	$335.4\mathrm{K}$	
α_{sync}	Synchrotron spectral index	2.8	
$\Delta \alpha_{sync}$	Synchrotron index coherence	0.1	
A_{ff}	Free-free amplitude	$33.5\mathrm{K}$	
α_{ff}	Free-free spectral index	2.15	
$\Delta \alpha_{ff}$	Free-free index coherence	0.01	

- Start with a simple but realistic model.
- Write down covariance function.

$$C(\nu, \nu')$$

- Start with a simple but realistic model.
- Write down covariance function.
- Non-dimensionalize to get correlation function.

$$R(\nu, \nu') = \frac{C(\nu, \nu')}{\sigma(\nu)\sigma(\nu')}$$

- Start with a simple but realistic model.
- Write down covariance function.
- Non-dimensionalize to get correlation function.
- To a good approximation, correlation function fits the following form with coherence length v_c =560 MHz!

$$R(\nu, \nu') \approx \exp\left[-\frac{(\nu - \nu')^2}{2\nu_c^2}\right]$$

- Start with a simple but realistic model.
- Write down covariance function.
- Non-dimensionalize to get correlation function.
- To a good approximation, correlation function fits the following form with coherence length v_c =560 MHz!
- Find principal components/eigenfunctions:

$$\int R(\nu - \nu') f_n(\nu') d\nu' = \lambda_n f_n(\nu)$$

$$\int_{-\infty}^{\infty} \exp\left[-\frac{(\nu-\nu')^2}{2\nu_c}\right] \sin(\gamma_n \nu' + \phi) d\nu' = \lambda_n \sin(\gamma_n \nu + \phi)$$

$$\lambda_n = \sqrt{2\pi\nu_c^2} \exp\left(-2\nu_c^2 \gamma_n^2\right)$$

Foreground Subtraction

Method #1: Line-of-Sight Polynomial Subtraction

E.g. Wang et. al. (2006), Bowman et. al. (2009), AL et. al. (2009a,b), Jelic et. al. (2008), Harker et. al. (2009, 2010).

Assumptions		Low-Performance Extreme	Fiducial Model	High-Performance Extreme
Experimental	Tile Arrangement	$ ho(r) \sim r^{-2}$	$\rho(r) \sim r^{-2}$	Monolithic with tiles separated by 40 m
	Rotation synthesis	None	6 hours, continuous	6 hours, continuous
	Noise level	$\sigma_T \sim 1 \text{ mK}$	Noiseless ⁵	Noiseless
Analysis	Primary beam width adjustments	None	None	Adjusted to be frequency-independent
	Bright point source flux cut S _{cut}	100 mJy	10 mJy	0.1 mJy
	synthesized beam width adjustments	None	None	Resolutions equalised by extra smoothing
	u-v plane weight- ing	None (natural)	Uniform	Uniform
	Order of polyno- mial fit	Constant	Quadratic	Quintic
	Range of polyno- mial fit	$80\mathrm{MHz}$	2.4MHz	$2.4\mathrm{MHz}$

AL, Tegmark, Zaldarriaga, MNRAS **394**, 1575 (2009) AL, Tegmark, Bowman, Hewitt, Zaldarriaga, MNRAS **398**, 401 (2009). See also: Wang et. al. (2006), Bowman et. al. (2009), Jelic et. al. (2008), Harker et. al. (2009,2010).

Can we do better?

Lossless

- Lossless
- Small "vertical" error bars

- Lossless
- Small "vertical" error bars
- Small "horizontal" error bars/mode-mixing

list

AL, Tegmark, Phys. Rev. D 83, 103006 (2011)

- Lossless
- Small "vertical" error bars
- Small "horizontal" error bars/mode-mixing
- No additive noise/foreground bias

AL, M. Tegmark, M. Zaldarriaga, MNRAS **394**, 1575 (2009)

Method #2: Fourier space filtering/ Inverse variance weighting

For similar methods, see also N. Petrovic & S.P. Oh, MNRAS **413**, 2103 (2011) G. Paciga et. al., MNRAS **413**, 1174 (2011)

Method #2: Fourier space filtering/ Inverse variance weighting

For similar methods, see also N. Petrovic & S.P. Oh, MNRAS **413**, 2103 (2011) G. Paciga et. al., MNRAS **413**, 1174 (2011)

Back to our wishlist...

Lossless?

Line-of-Sight Polynomial Subtraction --- Lossy

Inverse Variance Subtraction --- Lossless

Biased?

Line-of-Sight Polynomial Subtraction --- Biased in literature, fixable

Inverse Variance Subtraction --- Unbiased

Mode Mixing?

Line-of-Sight Polynomial Subtraction --- Yes

Inverse Variance Subtraction --- Yes, but less.

Measurement errors?

Line-of-Sight Polynomial Subtraction --- Larger

Inverse Variance Subtraction --- Smaller

Consider errors on the quantity

$$\Delta_{21}(k_{\perp}, k_{\parallel}) = \left[\frac{k_{\perp}^2 k_{\parallel}}{2\pi^2} P(k_{\perp}, k_{\parallel})\right]^{\frac{1}{2}}$$

Precision Calibration for Precision Cosmology

Redundant calibration

- Better characterization of errors, removal of systematic biases, correction for non-exact redundancy.
- Complements self-calibration

Precision Subtraction for Precision Cosmology Foreground

Foreground modeling

- Know why foregrounds are describable by ~3 components
- Foreground subtraction and power spectrum estimation
 - Inverse variance foreground subtraction is lossless, unbiased, has less mode-mixing, and gives smaller error bars.

And more!