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Outline

* Introduction: The missing satellite problem and LCDM

% Part I: Luminous Satellites

*

3
*

*
3

What do we hope to learn?
Previous measurements

This work: Measuring the satellite luminosity function since
redshift 0.8 with COSMOS

Comparison with previous observations

Comparison with simulations with Warm and Cold Dark
Matter

Part II: Dark Satellites

* Gravitational lensing to measure the subhalo mass function
* Narrow line emission from quasar lenses to obtain a

microlensing-free constraint on the subhalo mass function.
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Mapping between halos and galaxies is non-trivial
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Then how do you test A CDM?
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However, at lower masses...
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This implies that there are a large number of massive satellites around
the Milky Way which remain unobserved...



What went wrong?
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This is a test of the nature of dark matter and of complex star formation
processes.



How to make progress

Form a better understanding of what governs star formation
in low mass halos

* How important are effects such as disruption by the central
galaxy?

* How does the satellite luminosity function evolve over cosmic
time.

* How does the satellite luminosity function depend on the
properties of the host galaxy?

Directly measure the subhalo mass function using an
observable which does not depend on star formation.
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Part I: Characterizing the number and

spatial distribution of luminous satellites as a
function of environment and redshift.




What simulations predict about the satellite
spatial distribution:

Radial Distribution Angular Distribution
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E(r) x r* (Staggered)

Radial profile of bright satellites

Watson et al. 2012
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Satellite Luminosity function, SDSS

To measure the faint satellite LF cannot rely on spectroscopy.

Typically take two annuli, one which is assumed to contain satellites
+ background/foreground objects, the other which contains only
background.

Then subtract to get the satellite luminosity function

Guo et al. 2011
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Goals for this work:

. Increase the variety of studied luminous satellite populations by:

i) Increasing the redshift range, in which satellites are studied

ii) Measure satellite properties as a function of host morphology as well as
stellar mass

. Utilize all available information by performing a self-consistent statistical analysis
of all satellite properties of interest

-Simultaneously infer satellite numbers+ radial+angular distribution and
analyze as a function of host properties



Data:
Survey:

COSMOS ACS 1814<25.0 + ground based photometry and spectroscopy

Object Selection:
Hosts: 10.5<Log[M*/Me]<11.5, 0.1<z<0.8

Everything else: Magnitude limited
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Prospective Satellites:
*Up to 1000 times fainter than hosts

(magnitude limit of 25.0 1814 compare to mr= 22 in previous studies outside of

the local group)

*SMC-like satellites detectable to redshift
0.8

*as close as = 0.75/2.5 kpc to host centers

(compare to = 10 kpc in previous studies outside of the local group)



Remove host light from COSMOS
images to find close objects
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Binned radial distribution of object number density around

COSMOS hosts
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Bayesian inference



Model for the observed number density
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v Slope of the Radial Profile

-3 -2-1

Radial Distribution

Redshift

L 0.1 <2<0.4 (Ryy)

Early
- Hosts

O 10.5<Log[M,,] <11.0

B L | O 11.0<Log[M;: ]<11.5
e y =1.1£03
T
% 7 g 5 4 3 5 & 7 6 5 4 3 2

Am = sat mag - host mag

<

A3oroydiour 3s01]



Comparison of radial dist with other

work
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Angular Distribution
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Cumulative Luminosit
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Comparison of CLF with low z work
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Dependence of satellite numbers on host stellar mass
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The satellite luminosity function
depends on:

Cluster-Mass Halo Galaxy—Mass Halo

The halo mass
function-
dynamical
friction, density
profile, dark
matter particle
mass

Star formation- a
function of halo
mass, metallicity,
UV heating, sNae
feedback, ect.
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Simulations

We compare the data with predictions from four different
models:

* Guo et al. 2011- SAM applied to Millenium I (Springel et al.
2005) and II (Boylan-Kolchin et al. 2009) Msub, min = 10”8
Me (Tuned to match the field LF)

* Luetal 2012- SAM applied to Bolshoi-like EPS merger trees,
Msub min = 10" 9Me (Tuned to match the field LF)

* Menci et al 2012- the same SAM applied to two different EPS
merger trees- one CDM, one WDM with cutotf scale Msubmin =

1077 Me (Tuned to match the color magnitude relation)

amn01@physics.ucsb.edu



Comparison with our observations-MW
mass, low redshift hosts
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Main Points

#* All models do well for
MW mass, low
redshift hosts
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Fraction (u-i)
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Conclusions

* Measurements of satellite galaxies at a variety of redshifts
and environments provide important constraints on the
physics governing star formation and the nature of dark
matter

*  Among these models, WDM seems to most closely match
the observed redshift evolution and host mass dependence
of the satellite luminosity function, however future
improvements to SAMS may change this.

* Future measurements of faint satellite colors will provide
significantly increased leverage in understanding the
physics of star formation.
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Part II: Constraining the subhalo mass
function using OSIRIS NIR Flux ratio
anomalies

With: Tommaso Treu (UCSB), Shelley Wright (U. Toronto),
Chris Fassnacht (UC Davis), Matthew Auger (Cambridge
IOA), Greg Dobler (UCSB)
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This part, directly measure the
subhalo mass function

Cluster-Mass Halo Galaxy-Mass Halo

Simulation

0107 AOS}ARIY

Observation
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Outline

Gravitational lensing as a means of measuring the satellite
galaxy mass function

How to avoid unwanted microlensing

Using OSIRIS to obtain spatially resolved spectra to obtain a
microlensing- free signal

Preliminary results for two systems

Future prospects
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Gravitational lensing is sensitive to the
presence of subhalos regardless of their
star formation efficiency

Image positions and fluxes

depend on the mass
/ distribution of the deflector

Background M—— .
Massive Lens 20

. Galaxy
—

T

Distorted images

In strong lensing, light from a background source is deflected

enough that multiple images appear b T e g



Gravitational lensing is sensitive to the
presence of subhalos regardless of their
star formation efficiency

Subhalos can significantly
magnify and shift the
images from where they

. would be if the lens mass
distribution was smooth
Background Source @
Massive ‘Lens’
. Galaxy g

Distorted images
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Beware of microlensing by stars if the
source is small

Background Sourcef.
Massive Lens
O

Distorted images * \ If the source is small

enough, stars in the lens
galaxy can significantly
affect the lensing
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To use lensing to measure subhalo mass
function, need large, constant sources- e.g.
radio emission from an AGN
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This project: Using narrow line flux

ratios to constrain substructure lensing
Originally suggested by Moustakas and Metcalf 2003

Benefits: ——————
* All quasars show strong narrow line emission r tQ N
(unlike radio emission) |
K

* Not variable and not affected by micro-lensing

Narrow

Continuum o _.\,r."'}/
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Initial experiment: Measure N-L flux ratios
in 5 four image quasar lenses
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p/asix 0924 and 1422 as test cases

lower than . .

the smooth A/Bis~10%

prediction lower than
the smooth
prediction

Observed continuum
fluxes from HST |

(potentially affected by
stellar lensing)

Smooth mass
distribution
prediction

The experiment: Measure the flux ratios in the narrow-

line emission and use to constrain the substructure
. amn01@physics.ucsb.edu
fraction.



Use OSIRIS to get spatially resolved
spectra of the lensed images

* Adaptive optics gives ~mas spatial resolution

* Integral field spectrograph gives speciga at each spatial pixel

Hbb, 100 mas
pixels with
Keck II

B1422+231
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Optimal Spectral Extraction
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How to Extract Image Spectra

Part I: Use the white image, integrated over wavelengths near
broad emission features, to infer the PSF properties and image
positions for each exposure separately

Global Parameters- same for each exposure

(dxB, dyB), (dxC, dyC), (dxG, dyG), {B/fA,
fC/tA, fG/fA

Local Parameters- vary with exposure

(xA, yA), fA, fBack, pstWidth, psfPA, pstQ,
strehl
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Part II - Use the PSF, image position, and sky throughput
parameters inferred from the first step and do a xi-squared
optimization at each wavelength slice to get the image fluxes

Global Parameters

fA(A), fB(A), fC(Q),
fG(A)

Local Parameters

Residual sky,
multiplicative factor
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Bonus

Can infer the FWHM of [OIll] source size to 3 mas accuracy-
find it’s about 15 mas, or ~100 pc at (redshift 3.6 !)
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Extracted Spectra

Model the image positions and PSF properties simultaneously
for all exposures in the “white images” and use this to calculate

the image flux in each wavelength slice

1422
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™
¥

2.0}

5 ‘. '. 117 . ‘ m:

adbaldi 1110 i ARy

4750 4800 4850 4900 4950 5000/5050 51(
Wavelength (A)

[OII

1.8]
[}




Model Narrow and Broad Fluxes
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Observed continuum fluxes

1.5

Smooth lens prediction

Results for 1422

Optical/ NIR
H-Beta

Radio

e HA
e C/A
— Smooth Model B/A
—— Smooth Model C/A

0

2000 4000 6000
Rest Wavelength (Angstroms)

8




y (arcseconds)

Subhalo mass assuming an SIS mass profile
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Conclusions (Thanks for listening!)

OSIRIS + Adaptive optics give sufficient spatial and spectral
resolution to study narrow line flux ratios in quasar lenses

Results from the lenses 0924 and 1422 show that this method
can be used to distinguish between the effects of
microlensing by stars and millilensing by substructure.

Coming up soon: Analysis of the rest of the set and
gravitational lens modelling of narrow line flux ratios.

For the future: New surveys (PANSTARRS, DES, LSST, ...)

will discover thousands of new quasar lenses, and short
integration times with TMT will make this method feasible
for a large number of systems.
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